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ABSTRACT

Hydromagnetic phenomena are induced in the ocean environ-
ment by motions of the electrically conducting seawater across
ambient magnetic fields. This report surveys and estinates pos-
sible effects from a fundamental theoretic standpoint. The ocean
motions considered include those of natural origin and those asso-
clated with moving ocean vehicles. The ambient magnetic field is
that due to the earth, plus that due to the vehicle if it is mag-
netizable. These various motions and fields produce a broad multi-
tude of ocean magnetic (OM) phenomena. The manifold of OM effects
is surveyed theoretically, and from basic physical principles we
derive simple numerical estimators for the effects. The poten-
tially more significant include several pure-induction types (ron-
propagating) and several pseudowave types (OM induction effects
propagated by mechanical waves). Detailed aralyses of these OM
phenomena will be presented in subsequent rerorts.
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1. INTRODUCTION

Seawater has moderate electrical conductivity so that ocean
motions across ambient magnetic fields induce electrical currents
and associated magnetic fields, electric iields, and charges. Such
hydromagnetic (HM) effects have long been known, are firmly baced
in electromagnetic (EM) theory, and are readily measurable (e.g.,
Refs. 1 through 4). Nonetheless, because the oceanic electrical
conductivity is relatively small, the effects are far weaker than
ordinary laboratory HM or MHD (magnetohydrodynamic) phenomena. To
emphasize this, we use the term "ocean magnetics" (OM) for the
phenomena to be considered here. These OM phenomena are distin-~
guished from the oceanic induction often consideored in geomagnetismn
(cf. Ref. 5) that arises from time variation of the earth's field
rather than from seawater mov-=ments.

po— i e

The OM phenomena treated up to now have been those arising
from the interactiowu of natural motions of the ocean with the geo-
magnetic field. For example, Weaver (Ref. 6) has discussed wind
waves and ocean swell, Beal and Weaver (Ref. 7) internal waves, and

LS )

Ref. 1. K. C. Maclure, R. A. Hafer, and J. T. Weaver, '"Mag-

netic variations produced by ocean swell,' Nature, Vol. 204, 1964,
p. 1290.

i Ref. 2. Ye. M. Groskaya, R. G. Skrynnikov, and G. V.

‘ Sokolov, "Magnetic field variations induced by the motion of sea
waves in shallow water," Geomagn. Aeron., Vol. 12, 1972, p. 131
(translation).

Ref. 3. N. A. Cochrane and S. P. Srivastava, "Tidal influ-
ence on electric and magnetic fields recorded at coastal sites in
Nova Scotia, Canada,' J. Atmos. Terr. Phys., Vol. 36, 1974, p. 49.

Ref. 4. M. Klein, P. Louvet, and P. Morat, "Measurement of
electromagnetic effects generated by swell," Physics of the Earth
and Planetary Interiors, Vol. 10, 1975, p. 49.

Ref. 5. E. C. Bullard and R. L. Parker, "Electromagnetic
induction in the ccean,” Chapt. 18, Vol. 4, The Sea, Wiley-Inter-
science, New York, NY, 1970.

Ref. 6. J. T. Weaver, "Magnetic variations associated with
l ocean waves and swell,” J. Geophys. Res., Vol. 70. 1965, p. 1921.

Ref. 7. H. T. Beal and J. T. Weaver, "Calculations of mag-
netic variations induced by internal ocean waves," J. Geophvs. Res.,
Vol, 75, 1970, p. 6846.
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recently Podney (Ref. 8) has generalized these analyses, while

Larsen (Ref. 9) has analyzed tidal wave effects. A recent review

an¢ biblicgraphy of natural-motion OM studies will be found under

"hydromagnetic noises" in Akindonov et al. (Ref. 10). .

Further OM phenomena arise when a moving body is introduced
into the ocean environment. On the one hand, t'e ocean motions in-
duced by the vehicle interact with the geomagneric field to produce
OM fields, currents, and charges. On the other hand, when the ve- -
hicle is significantly magnetized, as the ferromagnetic construc-
tion of ships and boats generally permits via the geomagnetic field,
the interaction of the body magnetic field with ocean motions can
produce further OM effects.

We plan in this report to survey, summarize, and estimate
the broad spectrum of OM effects that can arise from the interac- -
tions of either natural or body-induced ocean motions with either
geomagnetic or body-magnetization fields. Our approach, through
theoretical fundamentals, recommends itself because the basic -
physical principles of the problem are well established and mathe-
matically formulated. We begin by reviewing the basic governing
equations (Sec. 2) from which the general character c¢f OM phenomena
and a summary catalog of effects are outlined (Sec. 3). Theoreti-
cal methods of analysis are then presented (Sec. 4 and Appendix A)
by means of which we deduce simple numerical estimates for the
various OM fields induced by natural and body-related sea wotions
(Secs. 5 and 6).

In keeping with the survey purpose of this report, the esti- -
mates of Sec. 5 and 6 are designed for ready comprebension at the
expense of full precision, in order to give a feeling for the var-
ious phenomena. Where available, precise analyses will be cited.
Finally, a surmary epilogue of the survey is given in Sec. 7, along
with a glossa.y guide to the detailed estimates, giving the major
symbols used.

Ref. 8. W. Podney, "Electromagnetic fields generated by
ocean waves,'" J. Geophys. Res., Vol. 80, 1975, p. 2977.

Ref. 9. J. €. Larsen, "The electromagnetic field of long
and intermediate water waves," J. Marine Res., Vol. 29, 1971, p. 28.

Ref. 10. V. V. Akindonov, V. I. Naryshkin, and A. M,
dyazantsev, "Electromagnetic waves in sea water (Review)," Radio- ’
teknika i Elektronika, Vol. 21, No. 1, Englich translation in
Radioeng. Electron. Phys., Vol. 21, No. 1, Hay 1975.
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‘ 2. FUNDAMENTALS

The EM iield generated by the ocean motions is governed by
Maxwell's equaticns. The ocean flowfield conversely is subject to
EM body forces through Navier-Stokes' equations. The combined
Maxwell-Navier-Stokes fields at sufficiently slow rates of varia-
tion (see Eqs. 3 and 4, below) comprise the diverse phenomena of
MHD of both cosmic and laboratory interest (e.g., Roberts in Ref.
11). The case of the ocean falls between these two extremes, with
neither conductivity nor flow-scale nor ambient magnetism particu-
larly large, so that the flow-induced Maxwell field is small and
the EM force on the flowfield is extremely weak. Thus we have to
deal with a degenerate variant of MHD, which we call ocean magne-
tics to emphasize its speclal characteristics.

2.1 THE MAGNETIC FIELD IN THE OCEAN

The primary relations for OM will be the Maxwell equatioms,

9B

curl E +-§§ =0, diV‘E =0 , (1la,1b)
3D

curl E T ::]‘, div B =Py s (1lc,1d)

where p, is charge density,'i the current densf.y, and E,‘E,'E,‘E

the EM fieid. Equations 1 are invariant with r-ierence frame, but,
for a stationary observer of the moving ocean, its constitutive re-
lations among B, H, D, E, and j must be transformed from those of

seawater at rest. Assuming the relations to be linear and iso-
tropic with dielectric constant ¢, permeability u, and conductivity
0, and denoting the ocean flowfield as u, one finds (Ref. 12, Part
iv) ~

j = o(E+uxB) + Pe U (2a)

~

Ref. 11. P. H. Roberts, An Introduction to Magnetohydro-
dynamics, American Flsevier, New York, NY, 1967.

Ref. 12. A. Sommerfeld, Electrodynamics, Academic Press, New
York, NY, 1952,

- 11 -
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D = €E + (ep - eouo)u x H , (2b)
B =l - (ey - Eghgl¥ X E , (2¢)

where €gr Ho are vacuum constants (uo =47 10'7, €o¥o = l/cz)

and where terms O(uzlcz) are neglected since we deal with nonrela-
tivistic flowfields,

u<<c ., (3)

In addition, we restrict cunsideration for the Maxwell field to
tength and time scales, L and T, such that

%«c , (%)

tha usual MHD limit that bars EM waves. Then, Eq. la gives
E/B ~ L/T << ¢ so that Eq. 2c becomes B = uH to O(uL/e“T). Compar-

ing 3D/3t and P U to curl H we have in Egs. 1lc and 2a that
curl H = j to O(Lz/csz) and 1 = o(E + uu x h) to O(uL/c?T). 1In

other words, we can neglect "flow magnetization," displacement
current, and convection current in Eqs. 1 and 2, and they remain
valid up to second order in the smallness assumptions of Eqs. 3
and 4., None of the surviving terms is of first-order smallness;
e.g., the '"flow polarization" in Eq. 2b as well as the induction
current in Eq. 2a are each of relative order u/(L/T).

A governing set of equations that determines each OM field
variable individually as a functional of the flowfield u emerges
from Eqs. 1 and 2 on the assumptions of Eqs. 3 and 4. We consider

H as the primary field variable and eliminate Q)‘E, and j between

Eqs. la, lc, 2a, and 2c to obtain the basic HM equation

oH

~ 1
-a-t— = o AB -+ curl (2 X E) ’ (58)

taking the ocean p and ¢ to be constant. In addition to Eq. 5a, RE
is subject to the subsidiary condition from Eqs. 1lb and 2c,

divE=0 , (5b)
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and to the boundary conditions that follow from Maxwell's Egs. 1lb
and lc (Ref. 12),

t3-H

xH and n e (F+ M continuous , (6a,6b)

~ o~

where é is boundary normal, M denotes magnetization of adjoining
media (e.g., steel hull), and surface currents are assumed negli-
gible. Finally, the remaining OM variables can be written in terms
of E‘and E‘through Eqs. 1 through 4:

i E = uﬂ , (7a)

j’ = curl B ’ (7b)

E = % curl E - uu x E , (7¢)

2=—§curl§—souo£xg , (74)

a— Pe = 50“0(3 * curl H - E e curl 3) , (7e)

where an inhomogeneity j + V(g/0) was dropped in Eq. 7e.

The fundamental relation of the OM field to the flowfield
is therefore given by Eq. 5a, which has the form of a vector diffu-
sion-convection equation. The diffusion term has time-scale
Ty~ uolL? and the convection term, To~ L/u. Hence,

L~

T
convection-rate _ d

diffusion-rate ?:" woul = RM ' (8)

where Ry is a magnetic Reynolds number. Ry is then a measure of
the relative effect that the flowfield has on the magnetic field.
In most cases to be considered in OM, Ry is somewhat less then
unity, though not negligible. Consequently, the OM fields can be
treated as small perturbations to the ambient field, though still
well above the sensitivity limits of present magnetometers.

We remark that, in the MHD approximation, the familiar dis-
placement/conduction current-ratio we/o ~ 1079/T is << 1/L by Eq. 4
and so is assured small for the lengths L considered here. That

- 13 -
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is, we do not enter the electrohydrodynamic regime that obtains
when electric relaxation becomes slower than magnetic, viz.
gle & l/td or L & 9/uoc ~ 10”2 meters here.

2.2 THE MAGNETIC FIELD ABOVE THE OCEAN

The utility of airborne observation warrants specific con-
sideration of the field equations above the sea surface. Since
the conductivity of air is ~ 107!" times that of seawater, the
conduction current is completely negligible there. Thus, within
the approximations of Eqs. 3 and 4 all currents are zero, so that
curl H = 0 (cf. Eq. 7b) and we may write

H=grad ¥ . (9)

Since div H = diV'g/uo = 0 by Eq. 1lb, the potential Y satisfies
Laplace's equation

AY =0, (10a)

subject to the boundary conditions (Eqs. 6a and 6b), which become
here

H continuous at air/sea interface , (10b)

- and subject also to the condition that the field remain finite at
: infinity.

Therefore, the OM field above the ocean is essentially de-
termined, via Laplace's equation, by the OM field at the surface
of the ocean. An immediate corollary is that the altitude depen-
dence of the OM field is fixed by the horizontal variation of the
sea surface field. The generality of this feature c¢f the aero-
field is somewhat obscured among details in the existing analyses
cited in Sec. 1.

¥

For example, consider a plane-wave Fourier component of the
OM field at the sea surface,

- iwt-ig-x
Esurface E e (11a)

- 14 -
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where C is Fourier amplitude, w frequency, and g horizontal wave-
vector. The corresponding Fourier transform of the aerofield

(z > 0) must then have the form 'gair =9¥=C eiwt-i'g-,g-iqz to

satisfy Eqs. 10, wherein Laplace's Eq. 1Ca requires AY « k2 + q2 =0,

or q = *ik. Hence, we have at once that

. _ -K2

Hair " Bourface * © (z>0) |, (11b)

taking Reg, (the real part of x¥) > 0 and dropping the exponentially
growing solution. In other words, a sinusoidal surface wave leads
to an exponential altitude decrease (cf. Refs. 6 and 8). More gen-
erally, in a surface varistion consisting of a superposition of
Fourier components, the longer wavelength effects tend, ceteris
paribus, to reach to higher altitudes.

2.3 THE OCEAN FLOW FIELD

Returning to the sea, we describe its flow field u by the
Navier-Stokes equation ~

du

~

ol -VP +p(g - Q xu) + ntu+ p(H « V)H , (12a)

wherein p is seawater density, P is the sum of kinetic, magnetic,
and viscous pressures (P = p + 3uHZ - (g + n/3)div u), g is earth's

gravity (including centripetal acceleration), Q its rotation
(twice angular velocity), and n, f are shear, bulk viscosities

that have been assumed constant. Along with Eq. 12a we have the
continuity equation

dl
div u = - —d—‘t‘f- , (12b)

and equations of state and energy as needed.

The salient part of Eq. 12a for OM phenomena is the last
term together with the magnetic pressure term. These terms enter
via the EM stress tensor on dropping electric components
(E2/c?82 . 1.2/c2T% << 1 by Eq. 4) and with p taken constant (ambi-
guities for moving magnetic media will not concern us here — cf.

- 315 -
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Ref. 13, p. 496). Alternatively, since V %Hz 2 Hx curl H + (E . .Y,)}.{.’

the two terms are equivalent to the Lorentz force density
Pe E+ jx Bsauj x H, to the same approximations as Eqs. 5 through

7. Notice that the j x H form makes clear that a strictly external
magnetostatic field (curl Ha j = 0) contributes negligible accel-

eration to Eq. 12a. Hence, aside from any nonstatic part of the
ambient fields (e.g., geomagnetic time variations), magnetism will
affect the flow only through the flow-induced OM field. Since the
latter is expected to be relatively small (~R,,, cf. the discussion
following Eq. 8), we therefore expect the effects of magnetism on
flow to be correspondingly small.

Furthermore, the relative size of the magnetic forces in
Eq. 12a generally depends on the Alfvén speed A, which gauges the
magnetic energy per unit mass. Thus, the ratio of magnetic to
inertial terms in Eq. 12a gives

2 2
ma%;szism'v‘ef , where A2 = Bg_ . (13)

Comparison of magnetism with other forces in Eq. 12a can be made
in terms of (A/u)z, Ry, and the usual Reynolds number R, = uLp/n,
or various combinations. (For examgle, from the last two terms in
Eq. 12a, magnetism/viscosity =(A/u)¢ - R, or RHZ/RM, where

Ry = ALYpop/n is the Hartmann numbher; we shall see that the latter
measures the ratio of magnetic to viscous wave damping.) For the
geomagnetic field in ocean water, A~ 2 - 107 % m/s, which is small
compared to most flow speeds of interest here. The already small
OM magnetism then has its effect on the flow reduced by the small
ratio (A/u)? of Eq. 13.

Consequently, it seems well justified to ignore the magnetic
fcrces in Eq. 12a. This neglect uncouples Eqs. 12 from Eqs. 5, and
thz flow description becomes an ordinary hydrodynamic problem that
we shall assume to have been solved elsewhere. We are then left
to consider Eqs. 5 alone. as outlined in Sec. 3.1 and elaborated
in the bulk of this report (Secs. 4 through 6). Because of the
potential importance of reciprocal magnetism-flow interactions as
propagators of OM waves, we shall also look more closely at the
coupled Eqs. 12 and 5 in Sec. 3.2 under various simplifying approxi-
mations.

4

Ref. 13. R. M. Fano, L. J. Chu, and R. B. Adler, Electro-
magnetic Fields, Energy and Forces, Wiley, New York, NY, 1960.
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Table 1 presents some definitions and numerical values of
various parameters of importance for ocean magnetic phenomena.

Table 1
Ocean Magnetics Parameters
Symbol Parameter Nominal Value*
g Ocean electrical conducrivity 4
M Ocean magnetic permeability 4n x 1077
€ Ocean dielectric constant 9 x 10~%/4m
B Ocean compressibility 4.5 x 10°10
n Ocean shear viscosity 1.5 x 10-3
Cq Ocean sound speed 1500
P Ocean density 1025
He Earth magnetic field 5 x 10% (y)
g Earth gravity 9.8

*mks units are used throughout, except that magnetic fields are
measured in Y (= 107° G).

e v — ket Eei
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3. OVERVIEW OF PHENOMENA

We decompose the magnetic field and the flow field into
their uncoupled portions plus hydromagnetically coupled remainders,

H=H h s u=u, +x . (l4a,14b)

~ ~0 ~

That is, Ho represents the magnetic field neglecting flow and yj
the flowfield neglecting magnetism, both of which will ordinarily
be assumed as given here.

The OM field proper, h, v, should be small according to the
discussions followirg Eqs. 8 and 13; specifically, we expect the
hierarchy

;Y(;<<-ﬁh6<<1 . (15)

(Or, if ug w0, consider the first ratio tc be v/(L/T)) There-
fore, in “the first instance one is led to consider the limiting
case

v =0 (OM induction) , (16a)

in which }j is simply induced by the given, purely mechanical, flow
uo- Subsequently we may lift this restriction in order to investi-
gate the important (however unlikely) possibility of significant
OM wave propagation. That is, the general case

v #0 (OM radiation) (16b)

admits h and v interactions that may conceivably radiate through
the ocean.

-18 -
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3.1 VARIETIES OF OM INDUCTION

In the case given by Eq. 16a, the OM field h is essentially
determined via the basic HM Eq. 5a as a function of the given
fields Hos up. This gives a straightforward induction problem,
which becomes multifarious, however, through the variety of non-
hydromagnetic fields Hy and yo that will enter.

The given magnetic field is taken as t.ne sum of earth (e)
and magnetized-body (b) fields,

Ho=H +H , an

He being the total geomagnetic field and Hy the proper field of
the body when immersed at rest in quiescent seawater.

In general, H, consists of the magnetostatic mean earth
field, which can be taken as locally uniform over scales of in-
terest here, plus the slight temporal and local variations often
called geomagnetic and geo.ogic noise, respectively. (Notice that
the noise includes that generated by currents induced in the sea
by the geomagnetic noise itself, so that He is not a strictly ex-
ternal field, cf. Eq. 20a below.) The noise is usually well above
magnetometer sensitivities and therefore must be considered in the
; detection of signals such as the OM h field down to the limits of
. sensitivity. However, the hydromagretic effects of the noise are
of course much smaller than those of the mean geomagnetic field.
Therefore, we can set aside the gecmagnetic and geoiogic noise in

the calculation of the OM h signais, and consider H, as constant
in space and time.

Similarly, while Hp in general has a spatial variation that
we shall, of course, not igpore, its irntrinsic time variations
will be assumed minor here. (Notice that, like He above, Hb in-
cludes a part associaced with currents induced in the seawater by
any intrinsic time variation of }; itself, so Hy too is not a
strictly external field, cf. Eq. 20b below.) On that assumption,
we can neglect the hydromagnetic effects of the intrinsic time
variations in calculating h and consider H;, as constant in the
body rest frame. There remains, of course, its convective time-

variation due to motion of the body through the sea (cf. the last
term in Eq. 22a).

{rS

gty

RO,

The given mechanical field is taken to be composed as

up = "natural" and/or "body-related" motions |, (18)
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wherein the two classes of motion include
1. The natural motions.

Surface :ravity waves (SW), due to either local

winds ‘sea) or distant storms (swell), (18a)
Internal gravity waves (IW), (18b)
Ambient acoustic waves (AW), and (18c) )
Sea currents and tides; (184) -

2. The body-related motiors due to passage of a vehicle
through the seawater:

Mean flow, i.e., the ~elative transiation of
the seawater and the body-field Hb’ (18e)

Potential flow, caused by hull displacement, (18f£)

Wake flow, from turbulent growth near the body
to collapse in far region, and (18g)

Propagated disturbances, due to body-generated
SW, IW, and AW. (18h) -

In general, these various motions are not independent, due to hy-
drodynamic interactions, so that Eq. 18 is a nonadditive combi-
nation. However, for simplicity we will cocasider the idealized
situation of negligible interaction. Then Eq. 18 becomes additive,
as does Eq. 17, so that the hydromagnetic driving (last term of -
Eq. 5a) is a sum of binary combinations of each part of H, with
each of the u,.

The numerous possible pairs of given motion (Eqs. 18a through
18h) and mugnetism (Eq. 17) yield a respectably long list of phenom- -
ena to he considered. After a general theoretical development in
Sec. 4, each phenomenon will be considered individually in Secs. 5
and 6. But first we will discuss briefly the propagation of purely
inductive effects (pseudowaves) versus true OM radiation.

3.2 PSEUDOWAVES AND OM RADIATION -
Even in the case v = 0 (Eq. 16a) of pure OM induction

notice that there can be propagation of the induced magnetism‘h =
§ - 20 - -3
z M
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when the inducing flow is a mechanical radiation., That is, if the
prescribed u, is a propagating flow (SW, IW, or AW), then the
purely mechanical waves carry along with them their induced h
fields. Such OM "pseudoradiations" are treated in detail as
propagating varieties of pure induction phenomena (Eqs. 18a, b, c,
and h, above) in Secs. 4 through 6.

In the case of ¥y # 0 (Eq. 16b), however, one has the possi-
bility of the complete OM fields, h and y, mutually interacting so
as to produce a magnetomechanical wave propagation, or true OM ra-
diation. In that case, we have to consider the coupled set of Max-
well-Navier-Stokes equatione that we reduced in Sec. 2 essentially
to Eqs. 5 and 12 plus subsidiary relations as required. These
equations become by virtue of Eqs. 14 and 15 a linearized set cou-
pling h and y. With h considered determined in terms of v by Egs.
5 and with g @ specified, Eqs. 12 represent four relations among

2, ~

five unknowns (v and the OM perturbations in density and pressure,
8p and 6p). To complete the system, simple equations of state
and/or energy will suffice for the idealized situations (cases 1,
2, and 3, below) considered here. More general cases, of course,
would require more detailed considerations of state and energy
conservation.

1. Incompressible and Homogeneous Ocean: Under the
simplest assumption the state equation is

p = Constant in Space and Time .

In this case, Eqs. 5 and 12 yield the familiar Alfvén radiation
(e.g., Ref. 14). For example, neglecting viscosities and earth
rotation ir. Eq. 12a (Eq. 12b is simple div u = 0) and suppesing
the unperturbed ocean is at rest, we get the plane-~wave dispersion
relationship

ik2) _ 2,2 2
w[ uo] = k“A“cos ekH

between wave-vector (k) and frequency (w), with A the Alfvén speed
(Eq. 13) and 6py the angle between‘g and Hy. But in the ocean, -
and A are so small that the dissipative term predominates, and

Ref. 14. J. M, Robertson, Hydrodynamics in Theory and Appli-~
cation, Prentice-Hall, NJ, 1965.
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k? & -ipow at any sensible frequency (viz., w >> poa? ~ 1011 Hz).
In other words, an Alfvén wave is so highly damped in the ocean
that it degene. -tes to simply a magnetic-diffusion wave (solution
of Eq. 5a with u = 0).

2. Incompressible but Inhomrgeneous Ocean: If the ocean
is treated still as incompressible, but inhomogeneous, we can con~
sider the density a Lagrangian constant, i.e., the equation of
state is

..d—g = -a—a £ e .
ac = 0 or 3t (- "e .

In this case, Eq. 12b is again div u = 0, but Eq. 12a with vis-
cosities and earth rotation neglected involves the added term gép,

leading to internal gravity-magnetism waves. For example, if the
unperturbed state is one of stable vertical (z) stratification,
then the above equation linearizes to (3/3t + y, * V)ép = -v, dpo/dz.

For a constant buoyancy frequency N (d.2., pg = exp(—Nz;/g)) and in
the Boussinesq approximation, one obtains the plane-wave dispersion
relationship

2
'w?2 - N2sin?0||w - kD) . wA2k2cos20
uo kH

where 6 i1s the angle k makes with the vertical. Here if one ne-
glects the oceanic A and o as vanishingly small (again for fre-
quencies >> 10711 Hz), one obtains in addition to the degenerate
Alfvén (magnetic-diffusion) wave above, the usual internal-gravity
modes (w = + N sinf) for constant N. A more complete discussion,
which also includes shear flow effects, will be found in Ref. 15.

3. Compressible but Adiabatic Ocean: When one admits
compressible, but adiabatic, ocean motions, the linearized equa-
tion of state is

p =pgll + B(p - pg)l or s0 = 2B

Ref, 15. N. Rudraiah and M. Venkatachalappa, "Effect of
ohmi: dissipation on internal Alfvén-gravity waves in a conducting
shea: flow," J. Fluid Mech., Vol. 62, 1974, ». 705.
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where B = l/pocs2 is the compressibility and Cg the sound speed in

the sea. In this case Eqs. 5 and 12 yield, in addition to the
degenerate Alfvén wave of case 1 and the IW for stratified in-
homogeneity of rase 2, the magnetosonic radiations of compressible
MHD. Neglecting damping and assuming Py to be uniform, we have
for the dispersion relation of the magnetosonic modes

kY

2

al |

But in the ocean A2/c52.~ 1012, so that with very little error
the magnetosonic wave is simply the ordinary ucoustic compression
wave (w2 = kzcsz). More detailed considerations, which also show

the very slight MHD effects on damping and acoustic shear waves,
will be found in Ref. 16.

1
2 - £ 1.2 2 22 2 2y2 _ 252 2
w =3 k {(c + A€) + [(c + A“) 4e _“A4cos<0

From these examples, it will be clear that true OM radia-
tion is not expected to be of significance in the ocean. However,
we emphasize that the purely mechanical radiations (SW, IW, and
AW) to which the magnetogravity and magnetosonic modes reduce in
the ocean are still capable of propagating induced magnetic fields,
the OM pseudoradiation referred tc above. Thus, for example,
ocean compressibility will allow what we will call, in contradis-~
tinction to the magnetosonic waves above, the sonomagnetic OM
pseudowaves discussed in Subsecs. 5.3 and 6.6.

Ref. 16. G. I. Cohn, "MHD wave phenomena in seawater," Elec-
tromagnetics of the Sea, AGARD Conf. Proc. 77, 1970.
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4. THEORY OF OM INDUCTION
AND USEFUL FORMULAE ’

In the pure induction case (Eq. 16a) in which the flow is
prescribed (u = uy), Eqs. 5 alone determine the magnetic field,

H=H +h-= H+Eb+h (19)
(cf. Egqs, l4a and 17). By our definition of H, as independent of -

flow, we have Ee and H satisfying Eqs. 5 in the forms

aﬂe PRY
A'l;le = uo -é-—' ’ (20a) -
. )
gy = voll, = vl Y, - T o ;
¢
div Ee = div ilb =0 . (20¢)

In Eq. 20b, is time derivative in the body rest frame, i. e.,Eb
is to be indépenden; also of the mean relative flow of seawater -
corresponding to

arbitrary body velocity = Vb(t) . (21) -

One sees that in general neither H, nor Hy, are external fields,
i.e., 8 H, 2. b # 0, since thelr time variations induce currents in the -
ocean J b= curl je # 0. As indicated in Sec. 3, we simply as-

sume the solutions Ee b of Fqs. 20 as given for present purposes.

On inserting the decomposition (Eq. 19) for H into Eqs. 5
and using Eqs. 20, we cbtain the determining equations for the OM

field, -
2oL aih = curlu, x B) 4 (V. - ) (22a) h

at UU ~~ ~0 ~ ~b ~ le ’ s
divh=0 , (22b) -

which are exact within the HM approximation (Eq. 4) and the induc-
tion assumption (Eq. 16a).

- 24 -
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An approximate form of Eq. 22a will suffice for discussion
here. The convective term curl (u; x H) is expected to be small
(cf. Eq. 8), so that we shall set § ~ H, in it. Then, symmetrizing
Eq. 22a by vector identities and Eq. 20c, we have

~ ~

9
[A - uo Bt]h s uo curl(H, x g = 'l;be Xb) . (23)

Since this is linear in }, we can handle the body magnetization-
translation interaction (Hy X Vi) separately from the other inter-
actions (H, x y,) below. In the latter, we usually consider HymsHa
(i.e., Bp << He). In line with the remarks following Eq. 17, we
treat H, as uniform and static and Hy as intrinsically static,
while of course V, is spatially invariant. Therefore, when Vi is
steady, both H, ~ H, and Vp can be considered absolute constants.
Notice that the flow u, is unrestricted (e.g., div‘g0 # 0) and

that h << H;, is not assumed.

oSt

In general, to determine the complete march of magnitude
and configuration for the vector field h requires a detailed analy-
sis for each of the many varieties of given flow uy (Sec. 3). Var-
ious approaches are appropriate for various flows, as indicated
briefly below (and in Appendix A). However, before carrying out
detailed analyses, one would like to have some estimates, however
crude, for the OM fields. Estimates for the sizes, and somewhat
for the extents, are readily derived and will be the main subject
of the rest of this report.

BT T e L YO ST

4.1 LOCAL ESTIMATOR FOR THE SIZE OF OM FIELDS

A rule of thumb for the magnitude of the OM field induced
locally follows from a dimensional analysis. Thus, setting

3/3t ~ 1/T, 42 ~ 1/L?, and curl ~ 1/L (cf. Eq. 4) in Eq. 23 with
the body term put aside, we get

uou OLHO

T+ 0(1y/T) for T >> Ty > Ry - HO (24)

h

(cf. Eq. 8). Here L is the flow scale, which is assumed to set

the h field scale. (For the body term in Eq. 23, let ugHy + Vbe
and L be the H, scale.) The last form in Eq. 24 is the quasi-

static limit (rate of change 1/T << diffusion rate 1/14), which
will be applicable for most OM induction effects. The opposite
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limit, T << 1, or L2 >> T/uo for which h/Hy ~ R,T/1, = ug/(L/T), -
becomes important only for very long wave motions (cf. Sec. 4.3,

where one notes that "quasi-static" does not mean "low frequency" .
for oceanic waves). -

Numerically, the estimator (Eq. 24), with Ho s Ee and the
values in Table 1, reads

.5
h s%- ul (ny=10" 6 (25) )

for up in m/s and L in m. We emphasize that this is only an order-
of-magnitude upper limit, and in special cases the field could be
much smaller. (For example, for a uniform fieid Ho and an incom-
pressible flow up that varies only transversely to Hp, the right-
hand side of Eq. 23 vanishes and h = 0.) Nevertheless, Eq. 25
affords a useful rule of thumb when used with proper discretion.

4.2 A THEOREM ON THE EXTENT OF OM FIELDS

For a localized, incompressible flow in the quasi-static .
limit, an explicit formula for the OM fileld h at distant points R

can be derived in terms of the spin angular momentum § of the flow, -
as follows.

Equations 23 and 22b, with 3/3t neglected (T >> 14), HysHe -
uniform, div y, = 0, and the body term <et aside, possess the inte-
gral solution g

1
B® =52 @, 0 f ey mor o (26)

plus vector harmonics as needed to satisfy boundary conditions -
(cf. Appendix A). Consider distant field points R well outside

the flow region. Then the integrzl in Eq. 26 can be approxi- o
mated by a Maclaurin expansion of l/|§‘— EJ as

fd£ “01/15 - 5[ = (l/R)f dru . - (¥ l/R)j Id£ Ty ugy + 0(1/R3) .

in tensor notation. In these integrals, by hypcthesis: -

TR B
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1. div y, = 0, so that uy = div(ry Yo) and ry ugy =

1 R 14 1 - 'y
2d1.(rirj£o) + 2(uoirj uojri), by vector identities;
and

2, u 1is localized, so that the divergence terms give van-
ishing surface integrals (specifically, we require Y
to decrease faster than 1/r% asymptotically).

Thus, we get

et i Loty NIRRT,
iR S PSRRI e R - ¢ e TR, BT

d£ 30/|§ - :.:l w% (.Y, 1/R) xfdl:‘ (ﬁx: X 30) . 7N

in which we recognize the last integral to be é/p for a flow re-~

gion of total spin § and homogeneous density p. Combining Egs., 27
and 26 gives then

4
T A

for sufficiently localized, incompressible, quasi-static flow in
approximately homoreneous infinite medium. The presence of the
air-sea boundary will modify this, but the ccmplete solution will
retain comparable magnitude in general. (An exception is the
highly symmetric case where § and H, are both vertical, for which
the complete solution includes an image field that exactliy cancels

Eq. 28 evcrywhere on the sea surface and, thus, bv Eq. 10b gives
zero aerofield; cf. Sec. 6.4.)

so PRI IR

AL 04
O S

g
—

Therefore, on working out the derivatives in Eq. 27, we
have the explicit thecrem

4>

BE) & g 3 % e - 3K

Z

1
“H)] g (29)

under the conditions stated above, wherein‘3 E‘BIR. Notice that
this falls off with distance like a dipole field, « 1/R3, but of
course with a more complicated directional dependence. Its magni-

tude then may be represented in terms of effective dipole magni-
tude,

By R

Maff
hR) | & 5= (30a)

SR, TP T ¥ At A

- 27 -

O I AT ONISVRRCANS

(reng 1" NN

R T TR T R A A 1S SRR Y M TR T TR B RRHES CAIT R A
s L 2 S . . .
s y - n . o
R T A AP R

S A R ARG TR

¥
i
i
4
i § PTG AT
3]




THE JOHNS HOPRINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAUREL MARYLAND

where
ucSH
*1 O.Y..O_-l_
Megf ™ Brp ~ T e " Em (30b)

in which Vol denotes the flow region volume. Alternatively, one
can write the distant field estimate (Eqs. 30) as

Vol] , (31)

h(distant)‘v h(local) ) {8nR§

in terms of the local estimator of Eqs. 24 and 25.

The above theorem and its derivation are mathematically
aralogous to a well-known magnetostatic theorem (Ref. 17, p. 145)
expressing the vector potential due to localized, divergenceless
currents in terms of their magnetic moment: A « j'dr i/lR - rl «
(Y 1/R) x m (cf. Eq. 27). However, there is the important dif-
ference that the induced OM currents here are not localized. That
is, whereas in the magnetostatic case the exterior current is zero
(B = curl A = grad (m . V)l/R, so that j = curl H = 0), in the in-

duction case here one has from Eqs. 7a and 24 the distant ("return")

current

1 Peff

10~ e, - pe -0 i (32)

which is nonzero.

The theorem 29 and resulting estimates 30 through 32 will
clearly be most useful for localized flows such as an isolated
wave crest or the wake of a body traversing the ocean.

Ref. 17. J. D. Jackson, Classical Electrodynamics, 2nd edi-
tion, Wiley, New York, NY, 1975.
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4.3 FLOW-WAVE INDUCTION OF OM PSEUDOWAVES

At the other extreme from localized flows, consider flow-
fields of large spatial extent that can be Fourier space-time
transformed into harmopic wave components. In the ocean, familiar
examples are various gravity waves and acoustic fields. Then, one
has to deal with induction by the transformed flow in Eq. 23 that
becomes linear with constant coefficients on setting aside the
body term Hp x Vp, taking Hp s~ Ho uniform and static, and uo con-
stant. Thus, Eq. 23 trar forms to yield the OM field also in har-
monic waves:

u, > Uy (z)e ~~ => h + h(2)e L3 (33)

for a flow wave of (angular) frequency w and horizontal wave vec-
tor x. This assumes an ccean of infinite, homogeneous horizontal
extent, but of course vertical (z) discontinuity or inhomogeneity
is allowed for in the amplitudes, Ug(z) and J(z). Notice that the
OM frequency and wave vector, and correspondingly its phase and
group velocities, are identical with those of the flow wave. That
is, the induction wave propagates exactly as does the given flow
wave. Physically, the magnetism simply rides along on the mechani-
cal wave, whence we call it OM pseudoradiation.

The amplitude of the OM pseudowave (Eq. 33) may be estimated
from Eq. 23, just as was done in Eq. 24 and the following discussion,
with T » 1/w. Thus we have the limiting behaviors

?g « H for wL? << L (34a)
1 e uo
o~
u
0 1
_— 2 —_
oL He for wLe >> o (34b)

where iﬂ = udﬁoL. Except for waves long enough for the vertical
scale length to enter, we have L ~ 1/k and wL ~ the wave phase
speed, Cph 2 w/k (cf. L/T =+ cph below Eq. 24). Equation 34a corre-
sponds to the quasi-static limit in Eq. 24, and Eq. 34b to the
nonstationary limit indicated following Eq. 24. Notice that in

the latter case the OM field is independent of the ocean param—
eters p and o, except as they delimit the w~L regime. We empha-
size that the quasi-static limit is not generally the same as a
low-frequency limit. Rather, for oceanic varieties of wave motion,
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Eq. 34a is the short wavelength (A

2u/k), high-frequency limit,
while Eq. 34b obtains for long, low-frequency waves.

To be specific, the two regimes in Eqs. 34 are delimited by
the criterion function w = 1/uoL?, which is ® x2/uc, whereas all
ocean waves have the dispersion relation w = w(g) increasing less
rapidly than k2 for all k. Consequently, the quasi-static case (Eq.
34a) is certain to obtain for w, x sufficiently above (or A below)
a point wg, kg (or Agp). On the other hand, the opposite limit
(Eq. 34b) may or may not obtain at w < wg, A > Ay, depending on
the vertical scale length (e.g., see Subsec. 5.1.5. In particu-
lar, the dispersion relations for SW on ocean of depth D, for IW
on a relatively sharp density change 8p/p at depth d << D, and for
AW of constant speed cg with a hard ocean bottom, are respectively

SW: w2€5) = gk tanh kD , (35a)
. w2(e) = _gx(8p/p)
W w 95) [ coth kd + coth k(D - d)] ° (35b)

12
[2 + ;5' 2
AW: wz(K) = cs2 k2 +

D2 ’
(modes ¢ = 0,1,2,...) . (35¢)

(For the shorter, capillary SW and the small-scale IW, as well as
Coriolis effects, see Ref. 18, The hypothetical case of "bound"
SW is discussed in Subsec. 5.1.5.) In the three cases (Eqs. 35),
one finds for the quasi-static limit above (w > wg and XA < Ay =

2n//uowa) the values:

SW: w

p = HogD for D 1 km,

1
(uog?)?

wg for D22 km ;

W: w, = pogd (8p/p)

2
AW: wy = uocs .

The frequency-wavelength (v = w/2m, A 2 2n/k) dispersion
curves (Eqs. 35) are illustrated numerically in Fig. 1 for tvpical

b+ —AEARR G Al SH VA s

Ref. 18. 0. M. Phillips, The Dynamics of the Upper Ocean,
Cambridge University Press, 1966.
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2=0,D=500m

£=0,D =5000m|

Frequency (Hz)

10—2

10-3

l 104
| |
]

10-5 v |
1 10 102 103 104 105 108 107
Horizontal wavelength (m)

Fig. 1 Ocean Wave Dispersion Curves of Acoustic (AW), Surface (SW), and
Internal (IW) Wave Motions for Various Ocean Depths (D), Pycnocline
Depths (d), and Density Changes (50/p), Sonic Mode (Q), with IW
Truncated at Brunt-Vaisala Frequency for a 25-m-Thick Pycnocline.
Dashed line separates quasi-static (left) and nonstatic (right) regimes of
OM pseudoradiation {cf. Eq. 34a).
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ocean parameters. The dashed diagonal Yine represents the limiting
locus (vg,Ap) for the quasi-static approximation (Eq. 34a) to be-
come valid for infinite vertical scale length, while departures
from this locus due to finite vertiral scale are indicated at -
k € 1/D (A » 2mD). One sees that the quasi-static approximation
Eq. 34a holds for: (a) all internal waves but those of tidal fre-
quencies; (b) all surface waves to well below the swell band,
breaking down only for the rare tsunami or louger waves; and

(c) all acoustic waves of audio frequency or higher. The non- -
static limit (Eq. 34b) can obtain, on the other hand, for deep-

water tsunamis, tides, and infrasound.
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5. ESTIMATES OF OM INDUCTION
BY NATURAL SEA MOTIONS

From the foregoing theory, we will estimate in this section
the OM fields induced by the various flows due to natural sea move-
ments, as listed in Eqs. 18a through 18d. Aside from their in-
trinsic interest (e.g., for ocean wave stwdies), these naturally
induced fields are important as noise hackground for observations
on the body-related OM fields treated in Section 6.

As indicated in the Introductio.., the estimates in this sec-
tion and in Sec. 6 are intended to be simple and clear, rather
than precise. When available, more detailed analyses will be
cited for more exact results.

5.1 SURFACE WAVES

The OM field induced by the interaction of Hy with the most
common ocean waves, sea and swell, have been discussed by a number
of authors (cf. Refs. 4, 6, and 8, and others cited therein).
Longer waves such as tsunamis were considered by Larsen (Ref. 9).
We can collate and summarize the essential results of these de-
tailed calculations by means of the foregoing theory. First we
consider the cases of sea and swell on deep ocean, as well as
swell in shelf waters, which come under the quasi-static approxi-
mation of Eq. 34a. We then go on to the longer waves for which

l Eq. 34b obtains.

R

"

Linear plane gravity waves of frequency w = 27mv, wave vec-
tor k, and amplitude 3, have flow speed and scale roughly

~

wa
~ tanh kD

dy ~ ——— and L~ (36)
tanh «D K

T o e A Tt e e

DU SLSRESA TC L

ISR v

near the sea surface (z = 0), where of course u, is largest. Then
one has

~ ~ ]l ~
h g Heuoav 72 Y (37)

x|e
®le

\Y

from the quasi-static Eq. 34a, which applies to both swell and sea
(Fig. 1).

S R 085 W %t s
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On the deep ocean (D > 1/, w? a:gx),'ﬁo decreases « e*®
below the surface (z < 0), and completing the OM solution to fit
the boundary condition of Eq. 10b introduces a factor of ; into
the surface field. Then more accurately

~

a
~ 1 v
hsurface & 10 v ny , (38)

while ; decreases essentially exponentially with depth (¥ 2cze*?

for -z >> 1/k). At altitudes z > 0, Eq. 11b with k = w?/g w» 4v2
gives at once, from Eq. 38,

~ ‘A 2
1{"v| ~bzv
hair N 10[\)](& Y (deep water) . (39a)

!
Detailed analysis modifies these expressions by a directional fac~
tor involving the magnetic dip angle (I) and the wave propagation
angle (SK) relative to magnetic north, namely,

\[sinzl + cos?I c0329K s

which is of order unity, except for east-west waves in the tropics
when it approaches zero (cf. Ref. 6). We set aside that case here.

In shallow waters (kD < 1, w A:K/EB), bottom effects become
important. The flow amplitude 30 has little depth variation, and
the OM field penetrates to the seabed where it must be made con-
tinuous into the conducting sediments. Detailed solutions are
given by Larsen (Ref. 9) and numerical results by Klein et al.
(Ref. 4). But observe simply that the above estimates remain
valid as to order of magnitude provided that instead of «x s w?/g
we use k & w/vgD, according to Eq. 35a. Thus, Eq. 39a becomes

.~ {Zﬁ]'; e“ZZVIJE y (shallow water) . (39b)

air 5 v

1l
Note from Eq. 35a that xD < 1 implies D g =T2, which, for periods
T up to the longest (20 s) swells, givesD & 80 m, i.e., the shal-
lowest shelf waters.

The above estimates make clear the very few factors tnat

fix the gross field magnitude. The dominant factor is the exponen~
tial altitude (and depth) behavior, such that the lowest frequency
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waves can be larger, since a, = 1/v? for given steepness (2a,/1).
Thus, the lowest frequency waves also tend to induce OM fields of
the most sizable ampiitude. More precise statements require speci-
fication of the wave power spectrum, which depends on local winds
and distant storms. Representative spectra fcr the corresponding
sea waves and ocean swells are sketched in Fig. 2. We stress,
however, that the actual spectra obtaining in varied environments
remain the major uncertainty in applicationc.

5.1.1 Swell

Ocean swell consists of long, not very steep waves that
have run faster and farther (i.e., Cph = VEﬁ?<fVX_and less dissi-
pation) than their shorter, steeper siblings from a storm center.
At a distant site, typical swell then exceeds sea waves in the
important low-frequency regime when local winis are below gale
strength (speeds < 25 knots, cf. Fig. 2). More detailed comparison
of swell and sea will be made in Sec. 5.1.3.

The swell has a relatively narrow-band spectrum, periods
T~ 10-20 s (Fig. 2). Swell wave-steepness, § = 2a,/A, is far be-
low the ideal limit (1/7), or even the observed wind-wave limits
(£1/10 ). A nominal steepness might be 6 € 1%, in which case
ay,~ 6 -« T2 € 1~4 m (cf. A~ 160-640 m). In any event, from Egs.
38 and 39a we have

~ T

T
hsurface ~art T slvy , (40)
Swell:
2
~ . .T , -4z/T -z/(25 to 100)
hair a5 e S e Y (41)

with T~ 10-20 s and a < 1 m.

Thus, for example, a magnetometer of sensitivity 107% vy
could register swell-induced OM up to altitudes of order

z  ~ 2,4T2~200m to 1 km (42)
max

when a~ 1 m and T~ 10-20 s (and to depths of similar order).
We note that in the case of shallow-water, long-period

swell (Eq. 39b above), Eqs. 40 and 41 are multiplied by a factor
2/D/T < 1 and tke exponent in Eq. 41 is divided by the same factor.
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Thus, the OM field becomes smaller and less extensive (+ 0 as D + 0)

for the shallower shelf waters.

5.1.2 Sea

The rms OM field induced by a random sea-wave field is de-
termined by ensemble-averaging Eqs. 38 and 39a appropriately.
Since h « a,, this means

1
2

1 ¢ 12
h_. " 50[ dw s(m)[-;]

where S(w) is the power spectrum of wave amplitudes a,, and the
factor % arises from time averaging. Sea spectra are relatively
broadband (Fig. 2) and vary with wind speed (W), fetch, and dura-
tion. As an upper limit, one can consider a fully arisen sea
(long fetch and duration, so only W remains as a parameter) and
adopt one of the simple phenomenological spectra that have been
proposed. In general, these spertra fall expcnentially with de-

100

Swell band

{0.5 to Tm amplitude)
10 |-

S{w) (m2 - 5)

0.1}
0.01L——1 l | i ]
0 #/10 #/5 3#/10 2%/5 =/2 3#/5

w=2av (s-1)

Fig. 2 Sea and Swell Wave Spectra for Pierson-Moskowitz (Ref. 19) Seas and
Typical Deep-Ocean Swells
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creasing w, competing with the opposite exponentiation in b {Eq.
39). The essential regult is a weakened altitude fall-off for
hpns as corpared with h. Thus, the spectral forms discussed by
Pierson and Moskowitz (Ref. 19) and the resulting asymptotic be-
havior of hy,- are, aside from algebraic factors,

m
n ~ _blz

=> h < e ,

S() « e P/v

according to the integral approximation given below. Here
m=n/(n + 2) is always < 1 and therefore h,,  exponentiates less
rapidly than the components h in Eq. 39a.

For more specific results, we will adopt the generally ac—-
cepted spectrum recommended by Pierson and Moskowitz,

ol
S(w) = F%éq expt%%%} m? -5 |,

where B = 0.74. The older Neumann spectrum has been used in
earlier detailed calculations, which are summarized into simple
formulae at the end of this section.

Evaluation of the integral for h at the surface (z = 0)

is elementary, while that at sufficient altitude can be approxi-
mated by the general asymptotic formul

[ 1 ~f (m )
-f(w) 21 B 0
Of dug(w)e [m]- g(wo)e

in which wy is the solution of f'(wo) = 0. In this way we derive
the useful simple estimators

wK]3
hms(z = 0) g 3_6) Y (43)
Sea:
W, )3 1 Z
hrms(z > %;] < {'3%] ¢ (and D7 (44)

Ref. 19. W. J. Pierson, Jr., and L. Moskowitz, "A proposed g
spectral form for fully developed wind seas based on the similarity :
theory of S. A. Kitaigorodskii," J. Geophys. Res., Vol. 62, 1964, ;
p. 5181, §
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where a = (3/2)3/2/5_ gt = (7.65/WK)2 per u and Wy is wind speed
in knots (K). Notice that Eq. 44 usually obtains at reasonable
altitude. since z > 1/a € 10 m for subgale winds, becoming only
~40 m for a whole gale (Wy ~ 50). One may interpolate roughly be-
tween z = 0 (Eq. 43) and z > 1/a (Eq. 44).

For sea, therefore, a magnetometer of sensitivity 107" y
could register the induced field to altitudes (or depths) given

roughly by
W
~iyz2, 1,1 K
2 ax 3 WK 1+ 5 ln[30] (45)

for winds from a gentle breeze up to hurricane strengths. The
height (Eq. 45) exceeds 1 km only for strong gales and decreases
rapidly for lesser winds.

In comparison with the Person-Moskowitz sez, the Neumann
spectrum S(w) « w8 exp(~-2g2/W2w?) gives a more extensive field. -
By the methods above, we can derive formulae corresponding to
Eqs. 43, 44, and 45, viz.:

7
w, 12 -

Z
g (%)L By
hrms[z > 5% < 35 e (o' 2z)* e

! = 2 = 2 . ~ 2.,
where o = 4g/W (12.2/Wg)¢ per n; and IZmaxI Wy 1+ ln(WK/25)].

5.1.3 Swell versus Sea

Comparison of Eqs. 40, 41, and 42 for “typical" swell and
Eqs. 43, 44, and 45 for a "full" sea shows that it requires a gale
for the OM field induced by sea to exceed in size and extent that
induced by swell, if present., That is, the relative steepness (§
up to 107) of sea waves is more than offset by the low-frequency -
content of ocean swell, unless a gale develops. Notice further
that, by its nature, swell is widespread in contrast to localized
high~sea conditions. Thus, swell also tends to dominate sea in
horizontal extent over the ocean.,
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TFigure 3 1llustrates the swell~ and sea-induced OM field
magnitudes given by Eqs. 41 and 44 as functions of altitude.
Curves at depth display similar behavior, except that h is in-
creased by a factor ~2k|z| = 8|z|/T? at depths |z| 2 1/k =~ T2/4,
where, however, exponential decrease also becomes duminant. More
detailed curves will be found, for example, in Ref. 4. However,
Fig. 3 is sufficient to show the sizes and relative regimes of
swell and sea OM. As indicated in the figure caption, Neumann
sea spectra considerably overestimate the OM field at altitude
relative to Pierson-Moskowitz sea spectra estimates,

5.1.4 Large Wave Crests

We have so far c¢- :idered linearized wave theory. Waves of
finite height (Ref., 20, .:c. 250) contain higher harmonics, but
these are of relative size ka = m6 << 1 even for the steepest sea
waves. Thus, the finite amplitude harmonics introduce negligible
corrections to the preceding formulae. However, aonlinear waves
do not superpose additively, and hence, in a high sea, chance com-
bination of waves can form individual wave crests of exceptional
height.

An isolated high crest will produce an excess contribu-
tion to the OM field through its associated mean flow. Naturally,
this canrot be treated by the plane wave theory as above. Instead,
the crest OM field may be estimated by the localized flow theory
of Sec. 4.2, From Ref. 20, the crest possesses a mean flow ﬁb =
KzachheZKz (z< 0, oh * w/x) with scale-length L ~ 1/k, so that
its magnetic Reynolds number is Ry ~ uoa?w over a depth ~1/2« and
a horizontal area ~(m/«)L.y where L., is the transverse crest
length; 1i.e., Vol ~ nLcr/ZK2 in Eqs. 30 and 31, According to Eq.
24, this flow in the earth field induces a local OM field that is
~ka << 1 times the linear wave result of Eq. 38. However, at dis-
tances R >> L.,, the field falls off as 1/R3 according to Egs. 30,
instead of exponentially as in Eq. 39. Further, since it varies
«a? instead of linearly with amplitude as in Eqs. 38 and 39, it
is possible for an exceptionally high crest to exceed the oversll
sea in the higher alcitude OM field.

The crest flow induces currents whose effective dipole mo-
ment is mgee ™~ Heuoazchr/16K2 according to Eq. 30b with the above
Ry and Vol expressions. For a deep sea (w2 s gk) then mggf ~
LuogHe ° (achr/éwK), cf. Eq. 38. Hence, at ranges R >> L., we
have from Eq. 30a

Ref. 20, H. Lamb, Hydrodynamics (1932), 6th edition, Dover,
1945,
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10

Sea
\\ Wy =50 kt wind

T \\(whole gale) —
- 10 N
-
©
2
5
b=

-
@
N

103

{fresh breeze)

104 [ | ] kK |
0 100 200 300 400 500 600 700
Altitude (m)

Fig. 3 OM Field Estimates for Pisison-Moskowitz Seas and Deep-Ocean
Swells. Dashed-line (whole-gale) sea is rarely fully arisen. Note:
Neumann-sea OM would be much larger, e.g. the fresh-breeze OM
would approach the moderate-gale curve shown, while fresh-gale
{37-kt) OM would lie near the whole-gale curve.
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1 a aLcr
Crest: h~=5 5 |7RT| Y » (46)

where the factor (aLCr/4KR3) « 1/R3 now replaces the exponential
factor in Eq. 39.

Again, for numerical 1llustraition we assume sensitivity
1074 y and find the maximum range

1
~ 4(a%L_ )% 47
R ax 4(a Lcr)3 IT<lhkm , 47)

where the upper limit assumes a long T ~ 20 s, an L.y ~ 1/ ~ 100 m,
and a crest height a ~ 3 m which might occur occasionally in a sea
state of about 6 (Wg ~ 30 knots). Thus, an isolated high crest can
sometimes produce an OM field exceeding that of swell at altitudes
~ 1 km. Notice that, since the crest moves at speed cph, its OM
field is like that of the effective dipole moving at speed

~%T m/s ~ T knots.

5.1.5 Long Waves

We turn briefly to low-frequeacy, long-wavelength SW, for
which the nonstatic limit of Eq. 34b can become applicable (cf.
Fig. 1). Aside from the tides, long ocean waves are rare, i.e.,
large seismic sea waves (tsunamis} occur approximately once a year.
Nevertheless, the HM effects of both tides and tsunamis have been
analyzed and compared with observation by Larsen (Refs. 9 and 21).
As the numerical results of his detailed analyses are readily esti-
mated as to order of magnitude from our theory, we shall do so for
completeness. Our estimates will not include the finer effects
due to sediment and/or mantle conductivities (of significance only
for the longest waves), for which see Ref. 9 (Table 1). Nute that
his "induction parameter" Q is essentially our wty.

A deep-ocean tsunami falls under the nonstatic cegime of
Fig. 1. Hence, Eq. 34b and the following discussion, together
with L ~ 1/k, EO'V agk/w (see Eq. 39b), and w/k = Cph & VgD (Eq.
35a), gives at once

t

P T N

2‘ Ref. 21, J. C. Larsen, "Electric and magnetic fields induced
: by deep sea tides," Geophys. J. Roy. Astron. Scc., Vol. 16, 1968,
o p. 47.
£ 41
&L, ce e
=
T
SRTASTRA T S eAR s = a e e - TATSRTRS  r mme n T IS S S T S e R S T s P AR, TR

§ SRR R A AR L g M A




*
E

S8 B AT TAS

A § T BT

T ER SIS DU HH

£t

.0 P Eoandy S A Moo NG R

ErS

PRKSRVERRRA I ey

THE JO4NS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAURFL MARYLAND

2

~

b o
H
e

oin

- (48)

ph

which is simply the tsunami-amplitude/ocean~depth ratio. For

a~0.2m D~ 5 km, and Ho~% * 10° y, this yields OM field magni-
tudes of h~ 2 vy, as wecre obtained in Ref. 9.

A shallow-water tsunami, on the other hand, falls into the
quasi-static regime of Fig. 1. Then Eq. 39b applies and

h~%a/l_)'y . (49)

Thus, for a~ 0.2 m and D~ 200 m, we get h~ 0.6 y, as in Ref. 9.

The tides considered as free waves (e.g., in the Atlantic
or Pacific basins) of frequency v € 2 + 1075 Hz have, from Eq. 35b,

KU
h 0
e

W [od

the same as for the deep-water tsunami. Modifications due to

boundary effects, such as proximity to an ocean island, are cal-
culated in Ref. 21,

All of these OM fields are very large scale, comparable to
that of the long SW (>100 km, cf. Fig. 1), both horizontally and
verticully from sea botton to the air above the sea surface. Thus,
locally they appear as periodic geomagnetic noise components.

5.1.6 Bound Waves

It is possible that a high-frequency system of bound waves
may be carried along by a single "carrier" wave (of frequency w.,
speed c.) in the case of nonlinear deep-water waves (cf. Ref. 22).
In such an event, the bound waves have a constant speed c. and
their w(x) dispersion relation becomes

w=e¢ckKkea %- (w > wc) s

Ref. 22. H. C. Yuen and B. M. Lake, "Reply to comments of G.
Roskes," Phys. Fluids, Vol. 19, 1976, p. 767.
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which is steeper than the dispersion curve for the usually assumed
free-wave spectrum ("sea" in Fig. 1). Thus, the quasi-static esti-

or of Eq. 34a remains applicable, leading as above to Egs. 38
.nd 39 times the factor c./c. For example, for deep water the
bound-wave spectrum would contribute the high-frequency hydromag-
netic amplitudes

~

w
hair“ [-‘1’:] x Eq. 3%9a .

As a result, for a sea spectrum containing bound waves, the rms
hydromagnetism estimates of Subsec. 5.1.2 may increase as follows:
Eq. 43 for the surface field by s c./W and Eq. 44 at z > 1l/a by
~cc/W (az/2)1/8, provided these correction factors exceed unity;
otherwise the change is negligible. However, typical sea spectra
have little contribution at wave speeds 2 wind speed (i.e., w =
g/c < g/W in Fig. 2), so that one expects c. < W. Therefore, the
existence of bound waves would have little effect on the sea-in-
duced hydromagnetism curves of Fig. 3.

5.2 INTERNAL WAVES

Buoyancy waves on a density stratification (pycnocline)
within the ocean generate OM fields that are usually smaller than
the SW~induced fields above. However, for observations with a
magnetometer towed in the vicinity of the pycnocline, the IW-in-
duced magnetism can become significant. 1IW magnetic fields have
been calculated by Beal and Weaver (Ref. 7) for a sharp pycnocline
and in a recent extension of their work (Podney, Ref. 8) for the
other extreme of an exponentially stratified ocean. 1In general,
the OM field due to IW can be estimated readily much as for §'
above. Thus, the quasi-static Eq. 34a (with parameters from
Table 1) gives

7 el

~1
A

A lel

h~ H_ 1o (in y) , (51)

applicable to any IW of supratidal frequency (cf. Fig. 1).

For the sharp pycnocline model of Beal and Weaver, we have

Uk ~ Aw/x ='Ecph, where Con = Vg(80/0)/ Yk + « coth kd for deep

ocean (D > 1/x) from Eq. 35b. Boundary conditions (Eq. 1Cb) to-
gether with directional dependence (cf. Eqs. 39 and following; in-
troduce a factor'v%-(t%), so that Eq. 51 yields roughly

~43 . T L.
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YAl4m for X € 2md , (52a)

:: ~ -l.- E— L] a .
“pycnocline ~ 10 ¥ &|p
Yd  for A 2 2nd . (52b)

(Away from the pycnocline,'ﬁ decreases essentially exponentially
with a scale length of 1/k.) Numerically, for pycnocline depth

d = 100 m and density step Sp/p < 10‘2, one finds near the pycno-
cline

o o

& few-tenths y/m (53)

for IW of a wavelength X ~ 1 km, and « Y3 less for » < 1 km (cf.
Beal and Weaver's numerical example).

For the exponentially stratified model, Podney (Ref 8)
chooses to express h in terns of the IW horizontal flow ar the

surface his v (n=1,2,...). Since U~ («kD/mw) + v , Eq. 51
yields ko,n ko,n

~ l R
h e D Vk),l 1~ (54)

for the numerical example L = 1000 m, Vo T 1 cm/s of Podney, in

rough agreement with his detailed calculations.

The more detailed behavior of the OM field can be seen from
the model calculations of Beal and Weaver, and Podrey. However,

Eqs. 52 and 54 display clearly the essential factors that deter-
mine the size of tne IW magnetic field.

In a stratified fluid there can also exist intermal shock
waves, or hydraulic jumps (Ref. 23), analogous to the well-known
SW phenomena le.g., bcres and solitary waves, cf. Lamb, Ref. 20,
pp. 280 and 423). Typical of earlier observation in the Straits
of Gibraltar and in Massachusetts Bay are the detailed measure-
ments of Hunkins and Fliegel in Ref. 24, A nominal example has an

Ref. 23. C. H. Su, "Hydraulic jumps in an incompressible
stratified fluid," J. Fiuvid Mech., Vol. 73, 1976, p. 33.

Ref. 24. K. Hunkins and M. Fliegel, "Internal Undular Surges

in Seneca Lake: A Natural Occurrence of Solitons," J., Geophys.
Res., Vol. 78, 1973, p. 539.
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amplitude of ~10m, speed of ~3 m/s, and time scale of ~ i0min,
which leads via Eq. 25 to the estimate

hjump ~ few gamma

for this transient hydromagnetic field.

5.3 ACOUSTIC WAVES

Sound in the sea generates a hydromagnetic field by virtue
of the interaction of the acoustic seawater motions with the earth's
magnetic field. This acoustic OM field is carried along with the
sound wave, thereby radiating through thz ocean as a pseudowave
induction field. We shall refer to the field as sonomagnetism, to
distinguish it from the magnetosonic radiations of compressible
MHD. The difference is that sonomagnetism propagates purely me-
chanically via the acoustic forces. whereas magretosonics involves
in addition the magnetic action back on the fluid motions. 1In the
ocean, that reaction is very smali (cf. the discussion following
Eq. 13), and so magnetosonic modes collapse to ordinary sound waves
(Ref. 16). (Note however that for sonic damping, rather than
propagation, magnetic forces become mwore important than viscosity
at infrasonic frequencies. That is, the Hartmann number given in
the discussion following Eq. 13 with L ~ 1/k = cg/w becomes Ry ~ 1/v
for the ocean parameters of Table 1, so that magnetic/viscous damp-
ing > 1 for v € 1 Hz. This happens to correspond roughly to the
transition frequency of Eq. 55 below.) Thus, the sound wave here
will be taken as prescribed by the usual acoustic equations (Ref.
25) for an assumed homogenevus ocean.

Sonomagnetism wias discussed theoretically by Kontorovich
(Ref. 26) for plane sound waves in an infinite ocean, with nrief
consideration of reflection-transmission at the air-sea interface.
We can recapitulate his results from our theory and discuss in ad-
dition the effect of finite ocean depth. The latter is necessary
particularly for infrasonic frequencies, since in that regime the
wavelength can become comparable to depth (cf. Fig. 1). and alsc
the ambient scnomagnetism will becoue largest.

Ref. 25. H. Lamb, The Dynamical Theory of Sound (1925), 2nd
edition, Dover, 1960.

Ref. 26. V. M. Kontoruvich, "Mag.etohydrodynamics of the
Ocean,’" Problems of MHD and Plasma Dynamics II, 2nd Conf. on
Theoret. and Appl. MHD, Riga, USSR, 1950.
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For a plane sound wave in infinite ocean, the sonomagnetic
pseudowave has identical frequency, wavelength, and velocity as
the sound. But its amplitude (and phase) depend markedly on
whether the frequency (v) is above or below the rate of magnetic
diffusion, i.e., closer to the quasi-static or nonstatic limits,

Eqs. 34a or 34b, respectively. The transition frequency is (see
the discussion following Eq. 35c)

wo UGCSZ
Vo = pr = w2z (55)

for the ocean parameters of Table 1. With L ~ 1/k, w = kcg, and
by continuity (Eq. 12b) Wy ~ (w/k) 8p/p = cgB 8P, Eqs. 34 yield
the OM amplitude estimate

v
ol 0
H, B « 6P o = (v >> vo) (56a)

He . B+ 6P (v << vo) (56b)

where B = 1/pcs2 is seawater compressibility and 6P the acoustic
pressure amplitude.

in exact expression for the OM field is easily derived
from the basic Eq. 23 for infinite plane waves, viz.,

which displays the dependence on field (§,) and propagation ()
directions and the general frequency behavior

2% _
1+ JL) exp iftan 1y .
vol V.
For example, a total field magnetometer would measure amplitude

h - ¥ JH,| =H, + B + &P sin? 6//1 ¥ (v/v )2 (cf. Eqs. 56), where
~ ~g e e 0

6 is the angle of sound propagation with respect to the earth field.
In general, the phase difference between the sonomagnetic and
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Fig. 4 Ambient Sonomagnetic Spectra for Typical Ocean Noises (Ref. 27) and a
Chesapeake Bay Fish (Croakers, Ref. 28).

acoustic waves, tan‘l(v/vo), is 90° in the regime of Eq. 56a and
0° in that of Eq. 56b. For the sonomagnetic field amplitude, we
can rewrite Eqs. 56, using Eq. 55 and the parameters of Table 1,
as

(5-86)/20 | (52 , \2y"% | | (57)

fi~ 10
in terms of the acoustic intensity measure, S dB re 1 Pa, for which
53 = 10s/20

According to Eq. 57, ambient sound levels in the ocean
(Ref. 27) produce the sonomagnetic ''noise" amplitudes shown in
Fig. 4. These are order-of-magnitude estimates only and for the

Ref. 27. G. M. Wenz, "Acoustic ambient noise in the ocean:
spectra and sources," J. Acoust. Soc. Am., Vol. 34, 126z, p. 1936.
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infinite-ocean plane wave zpproximation. Thus, it applies for
widespread, distant sources, with no specific account of sea-air
and seabed reflections, channeling, etc. {(See Sec. 6 regarding
strong, local sources at shallow submergences.) For such condi-
tions, Fig. 4 shows that ambient sonomagnetism is detectable with
magnetometer sensitivities of ~10~" y/vHz only in the far infra-
sonic regime.

We may note that, for a noise souce at great distances (R)
such that its radiation approximates a plane wave at the magnetom~
eter, the sonomagnetic transmissiomn lgss-factor is the square root
of the sonic factor (Ref. 28), i.e., h = 1/R for spherical spread~
ing, 1/V/R for cylindrical, etc. This obtains because h = sound
amplituvie, not intemsity, tn Eq. 56.

We briefly consider boundary influences. The sea-air and
seabed interfaces are included in the dispersion relation of Fig. 1,
from which we see that the transition frequency vgp of Eq. 55 dif-
fers little from D = @ yp to D~ 500 m. (In shelf waters of
D~ 100 m, vy increases to~ 5 Hz.) In general, the sonomagnetic
field can be constructed as a particular integral hp of our basic
Eq. 23 (with Vy = 0) plus a complementary solution h. chosen to
satisfy the boundary conditions. Now, using the acoustic wave
equation (A + w2/cs )3, = 0, one can see that the Ansatz hp =

-uo/ (iwuc + w2/csz) . curlgge ',Eo) satisfies Eq. 23, as well as

Eq. 22b. Therefore, h. is that transverse-wave solution of the
homogeneous vector Helmholtz equation ((4 - iwwo)h, = 0, cf. Eq. 23
with the right-hand side zero) determined through the boundary
conditions (Eqs. 6a and 6b) by the value Of‘BP at the interfaces.

For example, at the air-sea surface (z = 0) we find for the
acoustic modes of Eq. 35c¢ that

~ o~

) - - B6P i(ut-k°x)
BP(2=O) =3 sin2q (Ee * ‘E)f, + (Ee * Kz i+ \)/\)0

where a = tan~! D/ (2 + 2)7 contains the depth (D) and mode (%) de-
pendence. In terms of the acoustic cutoff frequencies v, =

(22 + 1)cg/4D (cf. Fig. 1 and Eq. 35c with x > 0), we have 2 sin 2o =

(vc/v)¢1 - (vc/\))2 which nas a broad maximum at frequency v = v2 Ve

Thus for v # v, to v ~ several v,, Eq. 58 and also the hc de-
tzrmined through it are comparable with the infinite plane-wave
expression given following Eqs. 56. Therefore, in that infrasonic

Ref. 28. R. J. Urick, Principles of Underwater Sound, McGraw-
Hill, NY, 1975.
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regime the complete sonomagnetic field is still fairly estimated
by Egqs. 56 and 57 when air-sea boundary effects are included.

The unique feature of the sonomagnetic pseudowave vis-a-vis
the acoustic wave, however, is that it extends into the air above
the sea where the transmitted sound is negligible. As stressed in

Subsec. 2.2, a surface field of the form « eiwt—;gzg as in Eq. 58

(see also Eq. lla) leads to an aerofield (cf. Eq. 11lb)

a iwt—;5°£;Kz
=‘E(z=0) e < e . (59a)

That is, the sonomagnetic aerofield looks like a surface wave
(pseudo ‘''ground wave') with altitude penetration measurea by

. -1
Scale height = ” (

W+ o7 (59b)

near the optimum frequency v ~ V2 V.. Thus, on deep ocean and for

v in the 0.1 to 1 Hz band, the sonomagnetic field has a scale

height of ~ kms. This is much greater than for other ocean-wave OM
in that frequency regime (viz., # 10 times the scale height for

long (20 s) swells, cf. Eq. 41) simply because infrasound wave-
lengths are relatively long (Fig. 1). Thus, although in the sea
sonomagnetism is smaller than (W-generated fields, in the air it

can remain detectable to altitudes beyond the limit for such

fields. For example, microseismic sound (Fig. 4) might in princi-

ple be studied free of surface-wave noise through the high-alti-
tude sonomagnetic field.

5.4 SEACURRENTS

Ocean circulations interacting with the earth's magneto-
static fileld have long been recognized as sources of considerable
electromagnetic perturbations, over and above those effects in-
duced in a static ocean by temporal variations in the eartk's
field. 1In 1968, Bullard and Parker (Ref. 5) reviewed both types
of oceanic induction, though with emphasis oa the latter. The
time-variation effects may be regarded as the ocean environment
countribution to geomagnetic noise and will not be considered fur-
ther here. The other, sea-current effects are discussed for a
simple model of major ocean streams in Subsec. 4 of Ref. 5, with
further references therein. Later references are cited in this
subsection.
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$Sea-current OM fields can be estimated from Egs. 24 and 25,

h<tul (0 , (50)

given the current speed and scale, uj, and L. Of particular inter-

est to observers has been the electric field, E = curl h/o - uyu; x Hg,

by Eq. 7c in the present approximation (h << Hp, H, uniform), or
sometimes only that part measured by electrodes moving with the

seawater, the "geomagnetic electrokinetic" (GEK) field, E sscurl h/c.

Generally, one can estimate these electric fields, using ]curl b' ~
h/L and Egq. 24, as

E~ uHup~3 107 uy (V/m) , (61)

which involves only the current speed, not scale.

In the open ocean, Ekman currents driven by winds of ~ 10
knots may have surface speed ujy ~ 10-! m/s and can extend to
depths up to ~102m, in which case

h€ly , Es-élauV/cm . (62)

Detailed analysis in Ref. 29 confirms this OM estimate. Open
ocean tidal currents have comparable speed and therefore electric
field. For example, Harvey (Ref. 30) measured E as ~ 0.014 uV/cm
at the lunar semidiurnal tidal frcquency.

Major open ocean streams can have higher speeds and larger
OM effects. For example, the equatorial countercurrent (eastward)
has up up to 1 m/s and depth ~10%2m, so that

h< 25y , E<Zu/en . (63)

Ref. 29. G. A. Burtsyev, 'Magnetohydrodynamics of sea cur-
rents," Fiz. Atmosf. Okeana, Vol. 11, 1975, p. 1084

Ref. 30. R. R. Harvey, "Derivation of oceanic water motions
from measurement of the vertical electric field," J. Geuphys. Res.,
Vol. 79, 1974, p. 4512.
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(Cf. Bullard-Parker's simple model calculation in Ref. 5.) Thus,
Rommel and McCleave (Ref. 31) quote their unpublished data predict-
ing up to 0.46 pV/cm in the Gulf Stream and von Arx (corrected)
figures of ~ 0.1 uV/cm in other Atlantic currents.

Boundary currents on eastern margins of the ocean, e.g.,
the California current, tend to be sluggish and relative shallow.
Thus, typically u,~ 1/10 m/s and L < 500 m, so that

h<10y , E < é%-uV/cm (64)

are generous upper limits.

Western boundary currents, on the other hand, are fast and
deep enough to produce considerably larger OM fields. For example,
the Florida current of the Gulf Stream is geostrophically driven
to speed uy of ~ 1 to 3 m/s with a draft of ~ 1 to 1.5 km, so that

he 102973y E< 1 uWen . (65)

All of the above sea currents are very large scale, with
widths typically ~100km. Thus, the induced OM field h is corre-
spondingly extensive, comparable to the scale of geologic anoma-
lies to the earth's dipole field.

On a smaller scale, one may consider the Langmuir circula-
tion, consisting of » wind-induced array of pairs of opnosing heli-
cal current cells. For windspeeds 2 5 m/s, the cell widths are 5
to 50 m (Ref. 32), and typical current speeds are ~ cm/s (Ref. 33).
Thus, the OM field forms a periodic spatial pattern of wavelength
(1) twice the cell width, or

- - 1
he 10271y wieh a~10'%% 4 (66)

Ref, 31. S. A. Rommel, Jr., and J. D. McCleave, "Oceanic
electric fields: Perception by American eels?" Science, Vol. 176,
1972, p. 1233.

Ref. 32. T. Gammelsréd, "Instability of Couette flow in a
rotating fluid and origin of Langmuir circulations," J. Geophys.
Res., Vol. 80, 1975, p. 5069.

Ref. 33. N. E. J. Boston, A, Maratos, J. A. Galt, and E. D.
Traganza, "A measurement of nearshore Langmuir circulation," Naval
Postgraduate School Report NPS-58Bb75041, 1975.
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An exact calculation (unpublished) for a simple model of the Lang-

muir cells finds h reduced by a factor ~ (cell-height/cell-width)?2,

which can be a2 order of magnitude or more. Note that by Eqs. 11

the field pattern (Eq. 66) extends into the air with .

Scale height = -%“— <15@m , (67)

so the Langmuir circulation OM effects are correspondingly con-
fined to the neighborhood of the sea surface.
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6. ESTIMATES OF OM INDUCTION
BY BODY-RELATED SEA MOTIONS

R

The size and extent of the OM fields induced by seawater
motions related to the passage of a body through the ocean, as
listed in Eqs. 18e through 18h, are now estimated from the theory
of Sec. 4., As indicated there, the basic Eq. 23 is driven by a
body magnetization~translation (H x Yp) interaction and bv vari-
ous geomagnetic~flow (H, x yg) interactions. Here up wil. be sea-
water disturbances caused by the body, each treated separately
(cf. the discussion following Eqs. 18) and in isolation from the
natural sea motions considered in Sec. 5. As there, clarity and
simplicity are chosen over precision, but some detailed analyses
that elaborate our estimates will be cited.

- s ;-.—ELL&: e,

We begin (Subsec. 6.1) with the magnetization-translation
interaction, simply a mean-flow effect, assuming a constant body
motion and magnetization but with no important restrictions on the
ocean model (uniform conductivity and of course the HM aprroxima-
tion (Eq. 4)). Then the flow effects due to finite body displace-
ment are taken up, under the assumption of a homogeneous and in-
compressible ocean. We first consider (Subsec. 6.2) the potential
flow acound a moving body at large Reynolds number. In an Oseen-
like approximation for the OM field, the potential flow effect
will be seen homologous to the mean flow effect. We estimate next
(Subsec. 6.3) wake-flcw effects in uniform or stratified ocean via
the theorem of Subsec. 4.2. Brief consideration is given (Subsec.
6.4) of the OM effects radiated via surface wave generation by a
moving body. We then go on to octher OM pseudoradiations that arise
by virtue of the inhomogeneity and the compressibility of the ocean.
Inhomogeneity introcduces propagated induction via internal waves
(Subsec. 6.5) generated by & body moving through stratified ocean.
Finally, compressibility (Subsec. 6.6) allows acoustic waves that
induce sonomagnetic radiation accompanying sound emissions from the
body.
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6.1 MEAN FLOW
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Consider the nydromagnetic eifect that arises simply from
the translation through the ocean of the magnetostatic field of a
moving magnetized vehicle. That is, we set aside until later any
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body. We are then left with just the "disembodied" magnetostatic
field H, sweeping through the seawater and thereby inducing mo-
tional electromotive forces, eddy currents, and magnetic fields.
Or from the point of view of the moving body, we have a mean flow
(-V) of seawater through the magnetostatic field (Hp) that in-
duces these hydromagnetic phenomena.

The mean flow effect 1s described . ithematically by Eq. 23
with y, set equal to zero. We assume a constant body velocity Vy
so that, in the steady state, 3h/0t = -(Vy * Y)j on the left-hand
side of Eq. 23. The spatial dependence in Eq. 23 devolves solely
from H, on the right-hand side, and that field varies algebraically -
with distance (R) from the body (cf. the multipole expansion of
magnetostatics). Thus, the magnetic Reynolds number for the mean
flow is, by Eq. 8, Ry ~ uoVyR, and the first (diffusion) term dom-
inates on the left-hand side of kq. 23 for ranges

1y oL, . 108
R<<RV_WVb 2 Vb . (68)

That is, the quasi-static approximation (cf. Eq. 24) obtains, and
we have the OM estimate

uoV,
h ~ oV, R ~ RP ™, (69)

in terms of tbe magnetic dipole moment of the body, i.e., with

Hp ~ mb/R3. The outstanding feature of the result of Eq. 69 is

its monopolar range behavior, i.e., 1/R? falioff, as compared with

the dipolar 1/R3 behavior of Hy. ©Of course this is restricted to

ranges of rq. 68 and to an infinite ocean. However, we see below

that che 1/R? behavior persists to all distances in the wake of

the body and in a finite ocean, with boundary effects mainly intro-

ducing complicated angular and directional dependence (cf. Eq. 71,

below). Thus, Eq. 69 will roughly estimate the size and extent

behind the body of this nonisotropic but monopole-~like OM field. -

Numerically, Eq. 69 may be evaluated by using my = fdt M ~
VM * M where Vy is the volume of magnetic matter in the body and -
M, its magnetization. (For example, a steel shell with a thick-
ness/diameter ratio § would have my in y - m3 ~ 106 « § + remanent
magnetization In gauss ¢ body displacement ‘- tons.) However, it
is more perspicuous to measure h relative to Hy from Eqs. 68 and 69

as
h R 400 ) -
- =~ = for R << R s{v-——__—_.km . 70
f By R, v Vi (in kt) (70)
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Thus, h represents a small correction to Hy that increases with
distance. It appears that at R~ R, (i.e., R; ~ 1) we might have
h ~ Hy. However, there the second term on the right-hand side cf
Eq. 23 becomes important, i.e., the quasi-static approximation
breaks down, and more detailed comsiderations become necessary.

Tne complete analysis* of Eq. 23 for a body of arbitrary
magnetizaticn and shape includes as a particular case the zero-
displacement mean flow effect More recently, the latter case for
a point dipole in a uniform fiow has also been giver by Semenov
(Ref. 34), in the context of the solar wind influence on the earth
dipole field. These analyses show that at great distances (R = B,
the magnetic field is swept back tc form a paraboloidal wake ve-
hind the body, analogously to Oseen's solution for the hydrodynamic,
low Re flow about a sphere (Lamb, Ref. 20, p. 613). In particular,
our analysis shows that at R > Ry, outside the wake the OM field
approaches exponentially the negative of the body field, i.e.,

h » -Hy, so that the total field H = H, + h = G there. Cn the
other hand, at distances R > Ry w1thin the wake the OM field re-
tains the l/R“ behavior of Eq. 69, plus a 1/R behavior modified by
a small factor involving the downstream angle in the wake. The re-
sult is that in a downstream "tail" b now remains ~ 1/R? as in Eq.
69 at all ranges. Thus in the far wake (R >> R;) the total field
is essentially just the OM contribution, i.e., h >> Hy, so that

Hy + h~ h. The two paraboloidally separated regions of dif-
ferent behavior of the OM field are as depicted in Fig. 5 of Sub-
sec. 6.2 (with R, from the unified analysis equalling oy here) .

An infinite ocean, or plasma in Semenov's case, is assumed
in the above. Otherwise, the only noteworthy restriction is that
the motion V, and the moment oy be constant (cf. Ref. 34 for oscil-
lating or precessing m).

Air-sea boundary effects have been calculated in the unified
analysis quoted in the next subsection.* For example, for a body
with vertical moment m, moving with horizontal velocity Vp at depth
d below the surface, one finds the results given in Eqs. 79 and 80,
below, except with m; there replaced by m,. That is, the OM field
both in the sea and in the air above has the form (for R << R,)

MoV, my

2 (71)

h=%{o-o} X

*This will be the subject of a report now in preparatior by J, F.
Bird.

Ref. 34, V., S. Semenov, "Three-dimensional dipole in a uni-
form flow of conducting fluid," Geomagn. Aeron., Vol. 15, 1975,
p. 419 (APL/JHU translation 2776).
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in which {++<} is a complicated vector function of magnitude ~
unity. Thus, the configuraticn of tiie OM field is determined by
{¢+*}, as depicted in Figs. 6 and 7 in the next subsection. The
size and extent of the field, however, remains roughly (~3) as
estimated in Eq. 69.

6.2 POTENTIAL FLOW

Now consider the hydromagnetic interaction between the flow
around the hull of a mcving body and the local magnetic field. 1In
the ocean, the hull flow may be taken as a potential flow, since
the Reynoclds number (Re) is large for dimensions and speeds of in-
terest here. That is, Re = Lu p/n = Ry * p/nuc by Eq. 8, which
in seawater (Table 1) gives Re ~ 10 11, Ry, so that Re >> 1 for
any Ry that will result in significant OM fields (cf. Eq. 24).

The local magnetism in the ocean may be taken as a constant uni-
form earth field (cf. the discussion following Eq. 17), ignoring
any body magnetic field. That is, for typical body magnetization
one has Hy/Hg ~ mb/HpR3 (Mb/He)(VM/R3) (cf. the discussion pre-
ceding Eq. 70), which is small everywhere excepting possibly in
the immediate vicinity of a thick-hulled ferromagnetic body. But
in the latter case, one will also have Hy >> h near the hull so
that the OM field is swamped by the body field. In any event, we
will confine our attention here to distances outside a few body

diameters.

The potential flow interaction - 'th the geomagnetic field
is described by Eq. 23 with the right-.1a d side forcing term

curl(ﬁo x 20) -+ —(Ee . ..V.).Y. ¢ (72)

where ¢ is the flow potential. Now, notice that the body term in
Eq. 23 treated earlier can be written

meurl(l, x %) = -( - DTy 3

in terms of the scalar magnetic potential ¥y to the body field H,.
One sees at once that the potential flow ef%ect is homologous to
the mean flow effect. In general, one can show (Bird, in prepara-
tion) that the potential flow OM is equivalent, within an Oseen-
like approximation, to a "mean flow" OM due to "translation" ¥}, =
Be of a "magnetizaticn" source div M = p(r), when the potential
flow is represented by a distribution p(x) of sources and sinks. -
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In particular, a Rankine ovoid model for the flow gives a
very simple homology relation between potential and mean flow ef~-
fects. The ovoild potential at sufficient distances R is that of a
source~sink dipole which we may compare with a magnetic dipoie po-
tential:

smslai(V DY, pa@ VL, (74)

whexe a and s are functions of body length L and diameter D
(Ref. 14, with ic: m = our s) such that s2a°a1LD?/16 for a slender
body (L >> D) or for a sphere (L = D) and an overestimate by at most
13% for intermediate L/D ratios. From Eq. 74 and a commutation

of operators, one sees Eq, 72 is equivalent to Eq. 73, only with
52a§ﬂe replacing m,. Therefore, for the ovoid and at R >> a, the
potential flow OM is identical with that arising from mean flow

Vp past a "hydromagnetic moment"

= 2,3 122
ma’sa.ﬂeszD Ee : (75)

Notice that m,  depends oaly on body displacement and earth field.
The purely hvdromagnetic effect (Eq. 75) should not be confused
with similar excluded-volume effects of magnetostatics.

We may compare myp, with m, as estimated preceding Eq. 70 to
find my,, # (He/fM * Mp)mp where fy is the fraction of total body
volume that is magnetic. Thus, as somewhat of a numerical coinci-
dence, a typical ocean vehicle with fy < 10-3 and My € 103 gauss
has

oy 2 my => potential flow OM 2 wean flow OM . (76)
In the limit of a nonmagnetic body, of course, the latter is ab-
sent, but the potential flow OM always persists.
The combined pctential and mean flow effects for a moving
magnetized body in the above ovoid-dipole approximation can now be

seen to be equivalent to the magnetization-translation interaction
for an effective dipole

Do Smy v By - an

Hence, the combined OM field is given as in Eq. 69 with Eq. 68,
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robmo
h ~ R for R << Rv . (78)

Again, for R » Rv the field h is formed into two paraboloidally
separated regions as depicted in Fig. 5, with the OM behavior as
described in Subsec. 6.1, only with 1o, generalized to mg. Thus,
in the outer region h + -Hg exponentially, where Hy is the field
due to the effective Jdipole my of Eq. 77, so that the total field
H= Be + ﬂb +h= 'Ee - 'ghm there with the dipolar Li.hm due to BN

{Note that the body field g% is still cancelled i the outer region
as in Subsec., 6.1.} On the other hand, in the paraboloidal wake,

h retains the monopole-like behavior of the inner region given in
Eq. 78.

Complete details of the OM field will be given in the uni-
fied analysis to be published (Bird, in preparation). The special
cases of spherical bodies with o = 0, gp !l (-)Vp and with
Ee]lﬁbl'(Txb) were treated earlier by Ludford and Murray (Ref. 35)
and by Bois (Ref. 36), respectively. These are included as degen-
erate forms of our analysis, which considers nonparallel Ho, Vj,
and m, nonspherical body, nondipolar Hj, and bounded media (see
below). The solution was obtained by an Oseen-like approximaticn,
in addition to the usual HM and incompressibility assumptions and
constant Vy,, Hy, H, simplifications. :

{ The air-sea boundary does not greatly change the estimate

2 of Eq. 78, but mainly the detailed configuration of the OM iield .
as indicated at the end of Subsec. 6.1, To begin with, the effect

of the air-sea surface on the potential flow is accounted for by

adding to the ovoid potential in Eq. 74 its image potential (Ref.

14). Then the solution of Eqs. 23 and 22b with the superposed po-

tentials is found that satisfies the boundary conditions of F-~s. 6.

0f course in the present, finite-displacement case, one must also

consider the body-sea boundary. The latter introduces in h terms -
¥ 1/R*, which become negligible away from the body. If the body
is submerged by more than a few times its dimensions, this body-
sea effect is unimportant at the air-sea boundary. In that case,
the latter independently determines the far-field effects via Eq.
1Cb.

Ref. 35. G. S. S. Ludford and J. D. Murray, 'On the flow of
a conducting fluid past a magnetized sphere," J. Fluid Mech., Vol. -
7, 1960, p. 516.

Ref. 36. P.-A. Bois, "Influence sur quelques types de champs
magnétiques de 1'écoulement d'un fluide conducteur autoutr d'une -
sph2re," J. Méc., Vol. 9, No. 35, 1970.
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Quter region

tnner region and wake

/,~=~._Body

S
Vb W Rv = 1/uoVy
} Monopolar (but nonisotropic):
‘ h« my/R2
OM field dipolar:
he (-) mo/R3

\

Fig. 5 Hydromagnetic Field Regions and Wake for Body Veiocity (Vp)
in a Meriium of Magnetic Diffusivity (1/uo) (cf. Table 1), Leading to
Length Scale Ry (Eq. 68). The OM field (h) for effective magnetic dipole
{mo, cf. Eq. 77) is indicated as a function of range (R).

The complete solution within the inner region and paraboloi-
dal wake of Fig. 5 (which are quite extensive in the ocean — cf. R
in Eq. 68) is detailed for such a submerged body by Bird (in prep-
aration). For example, in the case of a vertical effective moment
mp and horizontal velocity Vi, one finds the following formulae:

1. Within the sea, excepting horizontal ranges comparable
with body and/or measurement depths,

' hm%[ﬁcos $(1 + cos 8) - B cos ¢ sin 6 + & sin ¢)
s’i"

z rome .

R2 i (79)

Z" 2. In the air overhead, excepting ranges comparable with
2“ body depth,

2 - a - uoV, m
§ h 1|Rcos ¢ sin 6 - 6 cos ¢ + ¢ sin ¢ | | b0 (80)
g 3 ~572 1+ cos 6 RZ

: 5]
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In these formulae, R, 6, ¢ are spherical polar coordinates centered

P, azimuth ¢ measured
R, 8, ¢ unit coordinate

Field configurations calculated from Eqs. 79 and 80 are

shown in Figs. 6 and 7.

A

on the body, with the polar axis vertically u

relative to direction of becdy motion, and

vectors.

Aside from the involved angular and directional dependence

as illustrated for this example, Eqs. 79 and 80 show that the over-

all size and extent of the OM field due to combined potential flow

and mean ‘low effects remain roughly as estimated by Eq. 78.
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Fig. 6 Potential Flow and/or Mean Flow Hydromagnetic Configuration in the

raVp mg/y).

Sea. Spatial pattern of the OM field parallel to motion (h || Vb) in the

horizontal plane centered at a body (grid umits

g s b 2
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Fig. 7 Potential Flow and/or Mean Flow Hydromagnetic Configuration in the
Air. Spatial pattern of the OM field perpendicular to motion (h L Vp) ina
plane at altitude 15 grid units centered above a body submerged 1 unit.
{Grid scale 1/2 that of Fig. 6).

6.3 WAKE FLOW

Hydromagnetism in the wake of a moving body will be consid-
ered induced by a constant uniform earth field, neglecting any body
field. The OM effect is then determined by the character of the
wake flow, i.e., whether the body is self-propelled or towed, on
the surface or submerged, in a homogeneous or stratified ocean,
etc. However, estimates of the OM field via Subsecs. 4.1 and 4.2
will require only a general, phenomenological description of the
wake-flow magnitude and scale (cf. Eq. 25).
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In general (cf. Wu, Ref. 37), for the large Re ~ 10! Ry
indicated earlier (Subsec. 6.2), the wake may be divided into
three regions: (a) near wake, (b) turbulent far wake, and (c) lam~
inar far wake, Farther downstream, a submerged body moving in
stratified fluid may develop a region of (d) large distant eddies
(Ref. 38). In addition to these localized disturbances, of course,
there can be radiated disturbances (IW, SW, AW), that will be con-
sidered later (Subsecs. 6.4 through 6.6).

The near wake extending some few body diameters D down-
stream, typicaily, has transverse scale ~D and flow speed € V.
The local OM field is then € HguoVyD ~ 1VyD by Eqs. 24 and 25,
while at distant points it is given by Eq. 31 as

HerobD“
h g BRI (R >> D) . (81)

This may be compared with the potential flow effect, Eq. 79 with
my ~(1/10)D2LHe and L # D, to obtain

near wake OM D2 D
potential flow OM < LR <R (82)

which is small since R >> D.

The far wake develops in a complex fashion, particularly in
stratified flow (Refs. 39, 40, and 41), but generally the wake-
flow magnitude decreases and its scale increases, eventually col-
lapsing vertically in stratified fluld. In any event, the turbu-
lent far wake generates random OM fields of approximately zero

Ref. 37. T. Y. Wu, "Cavity and wake flows," Ann. Rev. Fluid
Mech., Vol. 4, 1972, p. 243.

Ref. 38. H.-P.Pao and T. W. Kao, '"Vortex structure in the
wake of a sphere," Phys. Fluids, Vol. 20, 1977, p. 187.

Ref. 39. R. J. Hartman and E. W. Lewis, "Wake collapse in a
stratified fluid: 1linear treatment,” J. Fluid Mech., Vol. 51,
1972, p. 613.

Ref. 40. R. J. Hartman, "The development of a partially
mixed region in a stratified shear flow," J. Fluid Mech., Vol. 71,
1975, p. 407.

Ref. 41. T. W. Kao, "Principal stage of wake collapse in a

stratified fluid: two-dimensional theory," Phys. Fluids, Voi. 19,
1976, p. 1071.
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mean, but of rms size comparable to that estimated for the near
wake., The laminar far wake developed by relaminarization further
downstream becomes of course part of the distant potential flow
already discussed in Subsec. 4.2,

Finally, consider the possibility of large eddies persisting
farther downstream, as indicated by the experiment of Pao and Kao
(Ref. 38). in stratified fluid of small Richardson number
(Ri = N2D2/v, 2 where N is buoyancy frequency). If such eddies
are produced in the wake collapse, we may suppose them to be
slowly rotating, spheroidal vortices, with vertical size ~D, hori-
zontal size perhaps an order of magnitude greater, and angular
velocity w ~ N. In that case, Eqs. 24 and 25 yield h NDZ2, or
compared to the near wake estimates above,

eddy OM DN _ :
near wake OM < Vb = R,

(83)

which is small for Ri << 1. Nevertheless, since these putative
eddies are very distant from the moving body and large compared to
it, their OM field configuration may retain interest,

For example, modeling the eddy as a spherical vortex of
radius a with its spin vector parallel to H,, one can use the de-
tailed solution given in Ref. 13, Subsec. 9.9. 1In this case, the
vector Jj is purely horizontal, azimuthally directed, with magni-
tude h = H,pow a%(sin 26/10) * {(R/2)2 for R < a, (a/R)3 for R > a}
where 6 is angle from vertical. Thus, the size of h is as esti-
mated above (Eq. 83), only now for a sphere and with a factor £1/10
introduced by the spherical boundary condition, viz., at most h <
wa?/40 at R = a. The fall off « 1/R3 outside the vortex is as ex-
pected from the theorem of Subsec. 4.2. The detailed field con-
figurations in horizontal planes passing through and near the
spherical vortex are illustrated in Fig. 8 (plane at a/5 above or
below vortex center) and in Fig. 9 (plane at 2a/5 above or below
3 vortex edge). Modifications due to air-sea boundary effects are
: k ¢ small, as long as the eddy is submerged more than a few radii.
However, we note that this vertical-spin-vertical-field example
is exceptional in that its OM field in the air above the sea is
identically zero (cf. following Eq. 28).

o

TR

More general cases of arbitrary eddy shape, spin, and field
direction will have fieid configurations outside the eddy given by
the theorem of Eq. 29.
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Fig. 8 Vortex Hydromagnetism in Plane Through Spherical Eddy: Spatial
Configuration of Total OM Field Over Planes of Rotational Motion
Located 1/10 Eddy-Diameter Above or Below Eddy Center.

—

T

133111t

ve

IR one e,

s
e
1
1
T
v
1
11t

3T

1

=3
e

3
PGB

'
1338
i
J13egetees
3}‘ i 3% H oy
3 { ji‘ - + i

(110
| !

v Vot
Y T O O T TP Ve s dereie chad e eacdasshibadondyd

Fig. 9 Vortex Hydromagnetism Above or Below Spherical Eddy: Spatial
Configuration of Total OM Field in Planes or Rotation at 1/5 Eddy-
Diameter Away from the Eddy Top or Bottom Boundaries.
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6.4 SURFACE WAVES

The OM field due to body-generated SW is estimated using
Subsec. 4.3, somewhat as we did for natural SW at the beginning
of Subtec. 5.1. In the present case, however, for constant body
motion V, a stationary (in body frame) wave system will develop
such that the frequency w of each Fourier component with wave vec-
tor g satisfies

w =K Xb = KVb cos GKV . (84)

Equation 84, together with the dispersion relation Eq. 35a, delim-
its the permissible waves, as detailed below. However, for any
ordinary body speed vy, Eq. 84 alone will suffice to estimate the
OM field. That is, Eq. 84 plots as a line of slope -45° and ordi-
nate intercept Vi, cos 6yy in Fig. 1, which, as long as Vy € 102m/s,
will always intersect the SW dispersion curves well within the
quasi-static regime. Hence, Eq. 34a applles with U ~ 3w/tanh «D
and L ~ (tanh D)/« (Subsec. 5.1) to give h & H, udaw/k. Then Eq.
84 yields at once

h € Heucvb cos 6Kv a , (85)

— ssnsh w—— —_—— g P——

as an upper limit on the OM amplitude in terms of plane SW ampli-
tude 3.

{ A limitation for Eq. 84 to be compatible with the disper-
5 sion Eq. 35a, which says that w < K/Eﬁ, is the requirement
Vb cos GKV < VgD . (86)

For most usual speeds and depths, Vi 2/p < g so that this condition
is fulfilled for all angles 0.y. Furthermore, ordinarily Vi 2/p << g
so that w << KJEE, i.e., the deep-water approximation is applicable
(cf. Eq. 87, below). Only for very fast motion in very shallow
water (Vb2/D > g) is the above restriction important, in which

case it limits the range of 8.y (see below).

In the ordinary case (VbZ/D << g), more accurate formulae
for the OM field analogous to those in Subsec. 5.1 are readily ob-
tained. The only difference here is that Eq. 84 combined with the
deep-water dispersion relation uw? ~ kg determines
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K K W—EZT— and W K ____g___._ (87)

b cos <V Vb cos eKv

Notice these give lower bounds (k 2 g/Vbz, w 2 g/Vp) attained for
plane-wave propagation along the direction of body motion (6.y = 0).
The first element of Eq. 87 shows that the body-generated SW are
short compared to depth (KD;BgD/Vb2 >> 1) and the deep-water ap-
proximation is guite good. Also, the quasi-static approximation

of Eq. 34a (w/k $¢ 1/uc) is verified from Eq. 87 to be adequate
for Vy < (g/uo)l/ sec 8.y, which is assured in the ocean (Table 1)
for Vp € 102 m/s (cf. above). Therefore, just as in Eq. 38 and

the discussion following Eq. 39, only with v therein given by Eq.
87, we have

~ l ~ ~ .
hsurface ] 16aVb {1, 6, ev) < 1_68Vb in y (88)

where {I, 6., 8y} = cos(8, = 6y)+vsin® I + cos® I cos? 6, in terms
of dip angle I and compass angles A, 6y of wave propagation and
body motion, respectively, so |6.y| = |6¢ - 6y|. Equation 88 gives
the OM plane-wave component at the air-sea interface in terms of
the plane SW amplitude 3. The altitude (or depth) variation is ex-
ponential (or predominantly so) corresponding to Eq. 39 and follow-
ing. However, in the present case one sees from Eq. 87 that

v, 2 .
vertical scale ~ %-s b (89)

g

is typically small (i.e., the body-induced SW are short) so that
the OM field is essentially restricted te¢ the near-surface region.
There Eq. 88 will give a fair estimate of the OM field.

In the fast-shallow situation (VbZ/D > g), we saw that the
permissible wave solutions are restricted to the directions
cos By < /EB/Vb (cf. also Ref. 20, p. 440). However, Eq. 88 with .
this restiiction remains a fair estimate, as does Eq. 89 well
within the allowed directions. For GK approaching the cut-
off angle 6., the scale by Eqs. 35a and 84 becomes 1l/k «

1/v8gey -~ 6. + =, but the OM _amplitude remains bounded in accord
with Eqs. 85 and 86, viz., h ¥ HeuovgD ¥ (cf. Eq. 39b).

For a simple illustration, consider the one~dimensional
(8¢ = 8V = 0) SW generated by a cylinder of radius b moving at sub- N
merged depth d in deep water. According to Dagan (Ref. 42), linear

Ref. 42. G. Dagan, 'Free-surface gravity flow past a sub-
merged cylinder," J. Fluid Mech., Vol. 49, 1971, p. 179. !
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wave theory is valld for d » 5b, in which case the wave amplitude
is 3 = 4nb2Ke_Kd (Ref. 20, p. 412). Then Eq. 88 with Eq. 87 gives

~ 2 -
T~ {n—f‘-,;&]exp [75%] , d» 5b) , (90)

which dcpends on cylinder size b and depth d as one might expect.
The body-speed dependence is such that the OM field is a maximum
for vy, = /%EE, giving h =~ b2//d v < 3b3/2 y for d » 5b, from
Eq. $0. For moderate dep%hs (2.5b € d € 5b), the same formulae
hold with d replaced by a larger effective depth; for shallower
depths (0 < d < 2,5b), noulinearities modify the SW significantly
(Ref, 42).

Realistic two~dimensional wave systems require Fourier in-
tegration of Eq. 88 to determine the OM field h. Of course, h
may be estimated from a knowledge of the dominan% SW amplitudes.
The intricacies of vave patterns (Ref. 43) will b reflected in
correspondingly complex configurations of the OM field. However,
perhaps the major aifference from one-dimensional models is that
the SW amplitudes @ fall off with distance from the source, except
possibly in any singular directions.

For example, Kelvin ship-wave patterns as sketched in Fig.
10 consist of transverse (v2/3 < cos 8¢y < 1) and lateral (0 <
cos Oy < /§7§) systems of equal amplitude (Ref. 20, p. 436). How-
ever, the transverse waves being longer, they have larger Ry (=d/x
« w/k = cos Ogy, by Eq. 87) and therefore tend to contribute more
to the size (and extent away from the surface) of the OM field.
Mathematically, one sees in Eq. 88 that the angle factor {I, 6., 6y}
is larger for transverse plane waves than for lateral, excepting
east-west ship headings (6y ~ % 7n/2) in the tropics(I ~ 0). Partic-
ularly in polar regions, or for more north-south ship headings
elsewhere, the transverse waves dominate in the OM effect, giving

h A aVb sin I vy . (91)
0f course, the plane-wave amplitudes @, and thus'E, must be deter-
mined from the usual two-dimensional circular wave solutions. How-

ever, well within the wake and far downstream, the transverse sys-
tem looks like plane waves of slowly decreasing amplitude,

Ref. 43. C. Hunter, "On the calculation of wave patterms,"
J. Fluid Mech., Vol. 53, 1972, p. 637.
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A« R-% (eKV s 0) (92)

at horizontal ranges R in given direction (Ref. 20, p. 436), and
the OM field falls off correspondingly. We remark that in the
cusp directions, the wave height decreases more slowly,

=% .6 .~ £35°) (93)

1
-3 2
a <« Rc (cos eK v

\

for a (not its Fourier amplitude @) as a function of uistance R,
along a cusp (Ref. 44). Hence, h can fall off slowly. However,
more z2laborate analysis is necessary to include the singular direc-
tions (Eq. 93)

e
Vb
North
Oy 0
K
Vb Oxv

Fig. 10 Kelvin Ship-Wave Hydromagretism: h Contributed Largely by Lateral
Waves (bold wavefronts, propagation vector k) From Body Surface
Movement V!, 'vith Asymptotic Range (R) Dependence Indicated
(cf. Eq. 90). Inset shows direction angles of text {(cf. Eus. 84 and 88).

AT £ A A KA G L

Ref. 44. F. Ursell, "On Kelvin's shipwave pattern," J. Fluid
Mech., Vol. 8, 1960, p. 418.
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i- 6.5 INTERNAL WAVES

In stratified ocean, a moving body generates IW whose OM

; effects can be estimated as for the SW above. IW motion is in

general three dimensional and vertically inhomogeneous, but its

horizontal dependence may usefully be expanded i~ plane waves w, K.
{ Then for constant body motion Vj, again one has a wave system sta-
tionary in the body frame that satisfies Eq. 84 as before. Since
. the IW curves in Fig. 1 lie considerably below the SW ones, the
compatibility condition between Eq. 84 and the IW dispersion Eq.
35b will be more restrictive than in the case of SW (see below).
By the same token, however, the aliowed IW a fortiori fall further
than did the SW within the quasi-static regime of Fig. 1. Hence,

i3 Eq. 34a with Eq. 84 gives as above immediately
h(z) € H uoV, cos 6 . aI(z) (94)
s for the OM amplitude due to a plane IW, in terms of its azimuth

By In the horizontal plane corresponding to vetical coordinate
z and its amplitude aI(z).

: The restriction imposed by the IW dispersion relation can

- be seen from Fig. 1, again imagining there the -45° line (Eq. 84).
It intersects the IW curves only if it does not exceed the limit
for long IW, for which the thin thermccline of Eq. 35b is most apt,
giving w € x/g(8p/p)d. Therefore, from Eq. 84,

Vb cos 6, < vg(8p/p)d ~ few m/s (95)

for typical pycnocline depth d and density change 8p/p (Table 1)
in ocean of depth D >> d. (For finite D, Eq. 95 is reduced by

/1 - d/D.) Thus, only for slowly moving bodies or for very deep,
strong pyrnoclines is there no serious restriction. Otherwise,
Eq. 95 delimits permissible IW propagation angles €,y for all

Vp > Vg(60/p) (cf. Ref. 20, p. 416 for the onme-dimensional case,
By = 0).

R R T

e

To illustrate the more detailed behavior, we may consider
various limiting cases that arise as Vi cos 8,y 1s decreased from
its limit (Eq. 95). Onec sees from Fig. 1 that, as the -45° line
of Eq. 84 is lowered, it intersects the IW curves initially in the
long-wave (1/k » d) region; then, for V, cos 8y somewhat below
the limit of Eq. 95, in an intermediate wavelength (¢ << 1l/k € d)
region, provided the pycnocline structure so allows (i.e., width
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g << depth d); and ultinately in the short-wave (1/k < ¢) region
where the IW dispersio: curve becomes bounded by the buoyancy fre-
quency, i.e., w® < N2 ~ g(é0/p)/c (cf. Ref. 18).

For the long waves with Vy cos 8y ~ Vg(8p/p)d, i.e., near
the cutoff angles (6.) indicated by Eq. 95, the dispersion Eq. 35b
together with Eq. 84 gives that

2

K 6|,

6
spTtan 6 - leKv - 6, (8 y

ba s ec) s (96a)

again for D >> d. Thus, « (and w) + 0 as 6.y + 8., while Egs. 94
and 95 with the values of Table 1 yield

h(z) & /Bolo)d « Fp(@) v, (B4 > 8) (96b)

KV c

as the absolute upper bound on the OM amr-litude.

For the solutions with Vb cos By somewhat smaller, but not
so much as to vitiate the thin pycnocline approximation, say
vg(8p/p)e << Vp cos O,y < Jg(dp/p)d/Z (assuming ¢ << d), the dis-
persion relation is the xd » 1 form of Eq. 35b, i.e., w = vkg(dp/p)/2.
This together with Eq. 84 determines (cf. Eq. 87)

8(50/9) Sp/p
K and w (97a)
2 2 ’
2V] cos BKV 2Vb cos GKV

which with the above limits on V, cos 6,y span the wavelength and
frequency ranges

e << —i— <d and VelZd N< w << N (97b)

indicated earlier. Observe from Eqs. 97 that the quasi-static ap-
proximation of Eq. 34a (wL? € w/x? << 1/uc) is assured for d <<

(2/u202g(ép/p))1/3, which is at least ~ 10" m.

This range of V, cos 6,y leading to Eq. 97b covers the bulk
of the admissible IW for a thin pycnocline (e << d). For such
waves, Beal and Weaver's work (Ref. 7), which led to Eq. 52 above
except with Coh = w/k = Vp cos 6.y here by Eq. 84, gives the (+50%)
estimate

~

1 ~
h~— YV cos SKVa

TR w% Y(60/p)/x ‘EIy (at pycnocline) (972)

I
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using Eq. 97a. Away “rom the pycnocline,‘ﬁ falls essentially ex-
ponentially with

vertical scale ~ %‘S d . (97d)

In Eqs. 97c and 97d, x varies according to Eqs. 97a and 97b.

Eventually, IW with Vy cos 6.y < vg(8p/p)e enter as higher
modes if the pycnocline is sharp (e << d), or in place of the
above "thin-thermocline" mode if it is diffuse (e ~ d). 1In either
event, these waves have scale length € pycnocline thickness, so de-
tails of the stratification assume importance. However, one can
roughly estimate the OM field from the general properties of the
IW modes. Their spatial variation is dominated by the shorter of
the two lengths giver in Phillips (Ref. 18, Sec. 5.25, the hori-
zontal %, ~ 1/ for w ~ N and the vertical %, ~ %,/VN2/w2 - 1~
w/Nk for w << N, Thus, one can write for the scale length in the
mode with « = k,,

) ~ N (mode n) . (98a)
n

Then from the quasi-static Eq. 34a with L ~ &, there, one has
directly

~ ~ l ~

h(z) € Heuoln uI(z) ~ g ln uI(z) Y (98b)
for an upper limit on the OM amplitude due to the IW mode n with
velocity amplitude Uy(z).

The direction angle 6,y for these higher modes by Eqs. 84
and 98a satisfy

_ w ‘~ N
cos eKv =V v Qn (mode n) . (99)
bn b

This represents a quantization of 6_y that can have import for the
extent of the OM field, as discussed later. For the OM size, how-
ever, Eq. 99 simply reproduces the estimate of Eq. 98b with Uy +
w3y , using Eq. 94 corrected by a factor k2, ~ w/N to include the
cases £, << {p encountered here. Note that by assumption abtove

Vp cos By < Yg(8p/p)e, which by Eq. 99 implies &, € € as we have
indicatad. Also notice that in the limiting extreme of an infinite
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ocean, in which case d + », Eq. 95 no longer restricts but instead
is replaced by V};, cos Oy € Ne.

To determine the full extent and configuration of the OM
field requires a detailed analysis equivalent to superimposing
(via multiple Fourier integration and with proper selection to fit
the boundary conditions, e.g., Eq. 10b) the various IW solutions
we have estimated. In special cases, however, some estimate of
the range behavior is easily obtained. For example, in a thin-
thermocline approximation the dominant IW displacement at the in-
terface behaves asymptotically like a plane wave of amplitude

~
. (-4

I

Sl

at large horizontal ranges p, according to Hudimac (Ref. 45, Eq.
44)., Then the OM field behaves similarly by Eqs. 96b or 97c. At
the other extreme, in an infinitely thick constant-N thermocline,
the IW flow velocity behaves asymptotically like a plane wave of

amplitude

o« 3
I R

at large radial distances R, according to Miles (Ref. 46, Eqs. 6.12
and 6.13). In this case, Eq. 98b (with £, ~ Miles' 1/k = Vi /N)
gives similar range behavior for the OM field. More generally,
however, the IW mode structure has to be taken into account.

The quantization of the IW into discrete modes can lead to
singular behavior in preferred directioms. Consider the field at
large distances in or near the pycnocline, which corresponds to
small « in the Fourier inversion, and therefore to large &} above.
Thus, the higher modes for which & >> %, contribute largely to
this asymptotic field. For such modes the scale length is 2, & £,.
Now £, is determined by the boundary conditions at the air-sea sur-
face and seabed (Ref. 18). Therefore, from Eq. 99 the mode angle
Oy 1s also essentially fixed, viz.,

cos exV = cos 6(n) ~'%§ Ez(n) (mode n) . (1c0)

Ref. 45. A. A. Hudimac, "Ship waves in a stratified ocean,"
J. Fluid Mech., Veol. 11, 1961, p. 229.

Ref. 46. J. W. Miles, "Internal waves generated by a hori-
zontally moving source," Geophys. Fluid Dyn., Vol. 2, 1971, p. 63.
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As a consequence, each higher mode yields via Fourier inversion an
asymptotic field contribution that is predominantly in the recipro-
cal direction

o) =3 - 8() (101)

where ¢ is the field-point horizontal azimuth, measured from the
downstream (ﬁgb) direction. (Briefly, Eq. 101 arises from Ey. 100
as follows: in cylindrical polar coordinates p, ¢, z with z axis

s ,a ~
vertical, h(p,$,z) = f d)g'ele cos {8y +¢) h(z) goes by Eq. 100 to
f cdx eio<p cos (6(n) + ¢) gn(

is predominantly along the direction for which cos (¢ + 6(n)) = 0.)
Notice that as the mede n increases so that £,(n) decreases, 6(n)~*
n/2 by Eq. 100, so that ¢(n) - 0O, by Eq. 101, That is, the higher
modes contribute asymptotically mainly within the downstream cone

z) whose horizontal asymptote (p =+ «)

Ng, (1)
¢ < ¢(1) ~sin I — , (102)
b

which for a given stratified ocean varies inversely with V, as
depicted by the ciippled region in Fig. 11.

90’ rw
X7 I B N
~
600‘ —
—1
v —
30° —

@ -

Vi/N2,(n)

Fig. 11 Singular Wedge of Internal-Wave Wake of Horizontal Azimuth (¢) as
a Function of Body Velocity {Vp) in Units of Brunt-Vaisala Frequency
(N) Times Vertical Scale of nth Mode (C2(n)). In general, all singular
rays lie in the stippled region defined by the lowest mode (n = 1); for
the special case of the exponentially stratified ocean model, singuiar
rays for higher modes (n =2, 3, 4. . ) are determined by the dashed
curves.
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We may illustrate, and also summarize the essential origins
of the singular behavior, by considering an exponentially strati-

fied ocean (N = constant and ¢ = D). In that case we have the
exact relations,

N2k? N2¢?
Dispersion: w? %2 K2 TRZ
z

Stationarity: w = KVb cos 6<V s
Boundary conditions: kz = %} . (n=1,2,...) ,

which yield cos 8,y = (Ns/Vb)/»’Kze2 + n212 (cf. Eq. 99). Then for
p + o (x +- 0), we have for all a

Asymptotically: cos 8(n) = Ne

Vbnn ,

cf Eq. 100, and by the argument above the corresponding

Singular directions: ¢(n) = sin~! [ Ne ] .

Vbnﬂ

whence our estimate for the downstream limiting cone now becomes
exact (Eq. 102). In this ocean model, the above results obtain
for all the modes (n > 1), as indicated by the dashed curves in
Fig. 11. These preferred directions were earlier derived by R. I.

Joseph from detailed calculations for the N = constant, € = D
model,

6.6 ACOUSTIC WAVES

The compressibility of seawater (Table 1) allows sound radi-
ation to propagate with phase speed cg =~ 1500 m/s, so that

b s (103)

for any normal ocean body motion. Hence, in contrast to the SW
and IW cases above, the stationarity condition, Eq. 84, and the
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AW dispersion relation, Eq. 35c¢, from which w < xV and v > KCg)
respectively, are incompatible. That 1s, in Fig., 1 the line given
by Eq. 84 lies far below the AW curve, and they cannot intersect.
Physically, no stationary wave system develops, because that re-
quires a relative Doppler shift in the body frame of unity (i.e.,
frequency zero), whereas the maximum shift for AW is Vp/cg <<
unity, by Eq. 103, For the OM field induced by AW, therefore,

the body is relevant solely as an approximate.y stationary source
of sound, which once emitted propagates as free AW through the
ocean. We thus neglect the body motion Vy, entirely below.

The sonomagnetic pseudowave emitted along with the AW by
virtue of the interaction between acoustic velocitiec and earth's
magnetic field was discussed for plane waves in Subsec. 5.3. At
great distances from a radiating body such that the AW is effec-
tively plane, the results are directly applicable. 1In particular,
we may use the simple OM estimates of Eqs. 56 and 57 for an in-
finite oce a, the more accurate Eq. 58 and its following discussion
for air-sea and seabed boundary effects, and Eqs. 59 for the OM
aercfield behavior. Of course, the AW intensity level S§ = 20 log 6P
in Ecs. 57 and 58 is that existing at the observation point. It is
reduced from that at the source position by losses, mainly the
transmission loss with proper allowance for channeling (cf. the
discussion following Eq. 57). At near-to-moderate distances from
the sound-emitting body, however, the acoustic and sonomagnetic
waves cannot be considered simply plane. Instead, more complex
fielcds are radiated as determined by source and boundary geometries.

In general, the sonomagnetic field equations consist of our
basic Eqs. 22 for h (with H =~ H,, Vp =0, and yo = J4¢g) and the
usual wave equation for the acoustic potential ¢g. For simple har-
monic emissions of frequency w, these involve acoustic and magnetic
propagation constants,

k
s

-ﬁL and km = vV-ipow , (104)

s

respectively. Thus, the field equations read

2y =
(a + km ZE Ho curlgge X4Z¢S) s (105a)
divh=0 |, (105b)
2 =
(A + kS )¢S Q ) (lOSC)
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for any sonic source distribution Q. Equations 105 are subject

to the magnetic boundary conditions (Eqs. 6) and appropriate acous-
tic ones. For given Q, the sonic field is determined separately

via Eq. 105¢, so we may assume it to be known and express b in terms

of ¢g as follows. First, we derive a particular integral by writing
hy = uo curl(Hg W), which identically satisfies Eq. 105b and

agso satisfies Eq.”105a if (& + km2 )V = ¢5. From the similarity

of this to Eq. 105c¢, it is easy to find the solution ¢ =

(g = ¢m)/ (kp? - kg?) where ¢ is the same function as ¢g only

with kg » ky in 1t, i.e., (&4 + km )om = Q. Thus, a particular in-
tegral of Eqs. 1052 and 105b is

~uo curl{H, x Y(¢, - ¢ )]

b, = K72 %2 (106)
P 3 m

where ¢m ! For a monopole Q (cf. below), ¢s o 2re just the
»

s-m’
Green's functions for the Helmholtz operators (A + kg m)’ respec~
k]

tively, given by Appendix B, Egs. B.3 and B.5. We can now write
the complete solution for the sonomagnetic field as

hp+11 (within ocean) (107a)
*{ h =
{ h (above, below ocean) (107b)
~a,b

where h, = UY¥ with AY = 0 (Subsec. 2.2), h; depends on seabed con-
ductivity, and h. is the complementary integral of the homogeneous
form of Eq. lOSa, (s + km dhe = 0, with div he = 0 (eq. 105b).

Thus, hy 1 ¢ can be expanded in known functions - ha via ¥ in har-
monic functions, hc in the transverse waves of the vector Helmholtz
equation, and hp similarly as appropriate (Ref. 47) - and finally
determined via the boundary conditions.

! For general illustration, we consider a monopole source in

a semi-infinite homogeneous ocean. Because the superposition prin-
ciple is valid for both acoustics and sonomagnetics, the effects

of any more general source can be built up as a sum of the mono-
pole effects. Also, for a source whose submergence is shallow rela-
tive to the ocean depth, the seabed boundary is of minor importance
for the OM field near the body, so only the air-sea boundary need be
considered. Inhomogeneities of scale greater than the source and/or

Ref. 47. P. M. Morse and H. Feshbach, Methods of Theoretical
Phvsics, McGraw-Hill, New York, NY, 1953.
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the observation depth will also be unimportant; small-scale inhomo-
geneity, which would greatly complicate the acoustic and consequent
sonomagnetic fields, 1s for simplicity assumed absent.

A monopole emits AW with purely radially directed acoustic
velocities uy which interact with the earth's field He to induce
electrical current in loops with a common axis, along H,. The air-
sea boundary may be ldealized as a perfectly reflecting plane for
the AW, equivalent to placing an image monopole above the surface
which also induces current loops about H,. Thus physically one
sees that the sonomagnetic field is closely related to the familiar
electromagnetic radiation generated by magnetic dipoles oriented
along Ho., albeit in the sonomagnetic case we have to deal with an
infinite distribution of finite-sized loops. The main difference
is that the sonomagnetic field will involve the acoustic propaga-
tion constant in addition to the (low-frequency) electromagnetic
one, kg and ky of Eq. 104. That is, the sonomagnetic field solu-
tion will take a form analogous to the Sommerfeld integrals for
low-frequency EM radiation from submerged radio antennae, but in
terms of both kg and km instead of only kj.

tail in Appendix B for the case of vertical H, — appropriate near
the earth's north or south poles (indicated as + and -, respec-
tively, below). The resulting h field is given via Eqs. (107)
with hy irrelevant here, bp determined by Eq. 106 from the ¢s,m of

Appendix B, and aerofield h, and complementary function he of the
form

_ , Jlet | \
Ea c - C.‘*_'(Sl’w) e Ea’c(m:d’p:z/ . (108)

’

Here, C is a constant depending on source intensity S1 (in db xe

luPa at 1 m) and frequency w, with [C,la10” -5 2+Sl/2°/ 202 + voz
in y - m3 for typical ocean parameters (Table 1) and Vo & 2 Hz
(Eq. 55). .ne I o are Sommerfeld-like integrals of dimensions

~a,
1/m3 that ary with source frequency and depth (w,d) and the cylin-
drical coordinates (p horizontal, z vertical). These integrals
are not amenable to closed-form evaluation, except for various
field-region approximations as given in Appendix B.

Since the outstanding feature of the sonomagnetic field
vis-a~vis the sonic field is that the former extends into the air
above the sea (cf. the end of Subsec. 5.3), consider the aerofield
h, and in particular its measure by a total field magnetometer,

Ba * ke~ h, * 2 in the polar regions. Inserting parameters from
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Table 1 into Egqs. B.16 through B.20 gives the following simple
approximations. At close ranges above a shallow source (p,z,d
<< 240/v and 180//v), we have the nonpropagating

Near aerofield: h -+ H wm a » %t | (109a)
~3 ~e
-10.6+S,/20
1 z + d)d
o] ~ 10 xrdd, | (109b)

where z(>0) is altitude above sea and R = vpZ + (z + d)2 is range
from source (parameters S;,d,v = w/2m). This is largest directly

overhead on the surface (p = z = 0,|a| a:10—10'6+81/2°/vd). Still
nearly overhead only now at high altitudes (z >> 240/v and 180//),
|a| goes over from the ~1/(z + d)% of Eq. 109 to ~1/z% (Eq. B.17).

On the other hand, at far horizontal ranges but low alti-
tudes (p >> 240/v and 180//Vv, z << these values, and d < p), we
have the propagating

. i(wt—ksp)
Far aerofield: Ba . ge M3 e . (110a)

a circular wave traveling at the speed w/kS = ¢cg of sound. Its
amplitude is

-10.6+5,/2¢ d

|8] ~ 10 Y

Fs(v) . iny , (110b)

where p is horizontal range from the source (S;,d) and F_(v) is de-
fined in Egs. B.20 and plotted in Fig. 12, showing a broad maximum
at v~ 1 Hz. The limiting frequency behavior is Fg(v) s vg/v for

v >> vg and 2¥v/vy for v << vp, where vy is the transition fre-
quency (s 2 Hz) of Eq. 55. Therefore, the sonomagnetic pseudowave
propagating at sound speed according to Eqs. 110 is greatest for
monopoles ot infrasonic frequency at deep submergence (as long as

d € p), and of course for high intensity S;, but falls off rapidly
with range p. For a monopole source S; = 180 dB at v ~ 2 Hz and
d~ 102 m, Eq. 110b yields wave amplitude |B| ~ 2/p? v.

More realistic acoustic sources than the monopole are in-
cluded in the detailed sonomagnetic theory to be presented in a
subsequent report of this series. For example, the dipole sonomag-
netic pseudowave can exceed Eqs. 110 by as much as J§/ksd, so that
in the numerical example above the aerofield amplitude can increase
to IBI'” 10/p2 y, now independently of the submergence depth d.
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0.1 1 10 100
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Fig. 12 Sonomagnetic Frequency Response Function: Fg(v) as a Function of
Frequency (v) for Far-Field Pseudoradiation of Eqs.110,

A i

i
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7. CONCLUSION

This survey substantiates the general conjecture that the
great majority cf OM phenomena are reliably estimated from the rule
of thumb:

1
h ~ RM He <7 ugk dnvy) , (111)

for the CM field magnitude h in the quasi-static approximation of

Eqs. 24, 25, or 34a. The notable exceptions are long SW (Subsec.

5.1.5) and infrasonic AW (Subsecs. 5.3 and 4.6), for which however
the equalily simple approximation Eq. 34b is applicable.

The broad conclusion to be drawn from the detailed esti-
mates of Secs. 5 and 6 is that (M fields are typically of the order
of magnitude of gammas or less. Despite this inhere:t weakness of
ocean magnetism, however, even the smaller OM fields are consider-
able relative to current SQUID (Superconducting Quantum Interfer-
ence Device) magnetometer sensitivities (10~% y/vHz or better, cf.
Refs., 48 and 49, Thus in magnetic measurements in the ocean en-
vironment, all the OM fields considered are potential contributors.
Of course the detectability of any one OM effect, in isolation from
the others regarded as "noise,' depends on the uniqueness of its
particular spatial or temporal characteristics.

The OM field extents and their detailed spatial-temporal
configurations vary considerably, with features of special interest
from case to case. The survey chavacter of this report makes it
unfeasible to summarize all of our results here with proper regard
to the assumptions and restrictions made in each case. It is pref-
erable to refer to the detailed discussion in the relevant subsec-
tions of Secs. 5 and 6. The glossary of major symbols given on the
following pages will facilitate use of the estimation formulae we
have derived.

A AR SR Y

TR ERUY.

Ref. 48. J. Clarke, "Josephson junction detectors," Science,
Vol. 184, 1974, p. 1235,

Ref. 49. J. Clarke, "Principles and limitations of SQUIDs,"
Bull. Am. Phys. Soc., Vol. 22. 1977, p. 86.
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GLOSSARY OF MAJOR SYMBOLS

General: ( ) denotes vector, Q;) unit vector, () Fourier amplitude

a

AW

5 Bapow i osderack owdasn st —r -

wave amplitude
(subscripts: v => at frequency v, I => internal wave)

acoustic wave

subscript denoting body quantity

wave phase speed

sound speed

pycnocline depth, or hody depth (Sec. 6)
ocean depth, or body diameter (Sec. 6)
electric field

son~magnetic frequency function (Fig. 12)
gravitational acceleration

induced magnetic field

total magnetic field
(subscripts: 0 => ambient, e => earth, b => body)

magnetic dip angle
internal wave
electric current density

wave-vector magnitude
(subscripts: s => sound, m => magnetic)

acoustic mode number
scale length of IW mode n
length scale, or body length (Sec. 6)

magnetic dipole moment
(subscripts: b => bedy, hm => hydromagnetic, 0 = combination)
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N buoyancy frequency (Brurt-Vaisala)
oM ocean magnetic

p pressure

R radial distance

Re Reynolds number

RM magnetic Reynolds number (Eq. 8)
R, radius of diffusion region for body of velocity V (Fig. %)

S acoustic intensity level, or spin (Subsec. 4.2), wave spectrum
(Subsec. 5.1.2)

S1 acoustic intensity level at 1 m from source in db re 1uPa
SM sonomagnetic
SW surface wave
T time scale (period for waves)
u flow speed
v hydromagnetic perturbation to the flow
Vb body speed
WK Wind speed
(subscript: K => in knots)
z vertical coordinate
8 compressibiiity
Y unit of magnetism (= 10'5 G)
} € pycnocline thickness. or dielectric constant (Sec. 2)
n shear vi_cosity
6 polar angle
eKv angle between wave vector and body velocity
3 horizontal wave vector magnitude
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wavelength
magnetic permeability
circular frequency

acoustic transition frequency (~ 2 Hz)

water density, or horizontal range
electrical conductivity

magnetic diffusion time

azimuthal angle

acoustic potential

flow potential
magnetic scalar potential

angular frequency
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FORMAL HYDROMAGNETIC SOLUTIONS
IN QUASI-STATIC LIMIT

When the hydromagnetic rate of change (3/3t ~ 1/T in Egs. 22)
is slow relative to the rate of magnetic diffusion (1/14 of Eq. 8),
the describing Eqs. 22 become

I
l Appendix A
I
|
]

Ah s uo curl(Ho x uo) , divh=0 ,. (A.la,A.lb)

in the approximation of Eq. 23 and omitting a body field and/or
velocity. Thus for slow temporal variations, time enters only
parametrically in Eqs. A.l. The first is a vector Poisson equation
(Ref. 47, Chap. XIV); using its Green's function l/lg,- L ] (i.e.,

A 1/Ir -r | = -4mé(xr - r')), one can write at once the particular
* :integral
d [
_ kO ~ ’
Bp(—s) = f -]'r—_—rr-l- curl (ll' % Ho) . (A.2)

By a parts integration (with Uy assumed to fall rapidly enough
with distance) and from the reciprocity property (a/ar + a/ar )

1/{r - £'| = 0, Eq. A.2 becomes
dr (~0 x Ho)
}‘1'p(~) = —ﬂ, cur J |£ — £l l N (A. 3)

which evidently also satisfies Eq. A.lb. On the assumptions of
uniform ambient field (H; = constcnt) and incompressible flow
(div ug = 0), the use of vector ide=tities and reciprocity with
parts integration as above further reduces Eq. A.3 to

' dr’' u (g')
- ko . ~ =0
- Bp (}:) = 4,", (Bo Z)[ ? (A° 4)

r-r
~

T st 3 X o

correspondiing to Eq. 26 as given in the text.

3 In the quasi-static approximation and on the above assump-
g - tions, Eq. A.4 thus gives the complete formal solution of the hy-
4 L dromagnetic Eqs. 22 (s~ Eqs. A.l) for an infinite medium. (Recall
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that other hyrdromagnetic variablee are given in terms of h via

Eqs. 7.) 1In the case of a bounded medium, the solution is modified
to satisfy boundary conditions by adding to Eq. A.4 a suitable
linear combination of complementary solutions of the homogeneous
form of Eqs. A.1, i.e., the divergenceless vector harmonics that
satisfy the vector Laplace equation (qg = div h = 0, cf. Ref. 47,
p. 1784),

In the quasi-static limit, an alternative metnod of solution
is available that determines h in two stages, instead of directly
via the hydromagnetic Eqs. 5 through 7 (or 22 and 7). Since the
first stage of solution involves scalar Poisson and Laplace equa-
tions, the method can have particular advantage for the applica-
tion of boundary conditions. The second stage then determines h
via a Biot-Savart or vector potential type integration. ~

Thus, returning to Maxwell's equations with 9/3t neglected,
one has from Eq. la that curl E = 0, so that

E

_z¢ (A' 5)

in terms of an electrostatic potential ¢. Taking the divergence
of Eq. A.5 and using Eq. 7c of the text ylelds

A = di\f(g x B) ~ u,ﬁo * curl g (A.6)

the latter form holding on present assumptions (u s~ ug, B = Hp =
constant). The approximate Eq. A.6 is a scalar Poisson equation,
provided the unperturbed flow is rotatiomal (curl yg # 0) ard has
some vorticity along the magnetic firld (Hy * curl up # 0). Other-
wise, notably for any irrotational flows, it becomes simply the
Laplace equation.

In any event, with given right-hand side and appropriate
boundary conditions in Eq. A.6, its solution ¢ determines E via
Eq. A.5 and thence the current

;]' 'y o(-z¢ + uy, x HO) {(A.7)

by the modified Ohm's law (Eq. 2a, and see the discussion following
Eq. 4 of the text). Finally, the hydromagnetic field follows from
Eq. 7b (with H = constant) in the integral form

B(E) =—.,%TT dgl' x v ———r—lri | . (A.8)

~ r
~

~
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One may verify that Eq. A.8 upon insertion of Eq. A.7 reduces to

the infinite medium Eq. A.3, above, by use of the vector identity
(with Eq. A.5) V¢ x V 1/|£ - £'| = curl (E/l.f —.E' |) and the inte-
gral theorem [dr' curl’ (F/|r —5’ D) =‘fd£’ x f‘.’/lf. -£'| = 0 for

field falling off adequately at infinity, and then rearranging the
remaining portion of Eq. A.8 by use of the reciprocity property.

prs-sobs Pratais

Qe ey
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Arpendix B

SONOMAGNETISM INDUCED
BY SUBMERGED ACOUSTIC MONOPOLE

The sonomagnetic field Eqs. 105 are solved by the method of
Eqs. 106 and 107, and the discussion following thereafter, for a
simple harmonic acoustic monopole submerged ir a semi-infinite
homogeneous ocean, whose surface is approximated as a perfect sound
reflector. Thus, the source term in Eq. 105¢ is a monopole at
depth z = -d and its negative image in the air-sea surface (z = 0)
at altitude z = +d,

Q = -4nKe®t [e(x + 2d) - 6(x - 3a)] . (3.1)

The strength coefficient K can be expressed via acoustic relations
(Lamb, Ref. 25) in tevms of the source intensity level S; (in dB

re 1 :Pa) at unit distance from the source in the absence of bound-
ary reflections,

ic 2 ~1145 /20
« 8P -+ 10 , (B.2)

where cg is souad speed, B compressibility of seawater, and P am-
bient pressure. Notice that the last factu- in Eq. B.2 contains
unit iength, so K has dimensions of length3/Lime. The solution of
Eqs. 105c and B.l for the acoustic potential ¢; is composed of
spherical waves from the source and its image,

( iw.~ikgr mt-iksr‘)
3 e
¢s = K = - 7 s (B.3)
in which r is distance from source and r from its image,
r= i+ (z+d)?2 r =%+ (z-d)2 , (B.4)

in cylindrical coordinates ¢, with z centered at the a‘r-sea sur-
face directly above the source (at p = 0, z = -d). The magnetic

potential function ¢, used to construct the particular integral h
in Eq. 106. ~P
¢m = ¢s with ks > km s (B.5)
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follows at once from Eq. B.3. The prupagation constants kg, ky
are ns defined in Eq. 104. The.hp given in Eqs. B.3 through B.5
and 106 is related to the complementary hi. and the aerofield h,
by the boundary condition Eq. 10b at the air-sea interface,

h =h_ +h at 2=0 |,
~a ~C ~p

(B.6)

which firally determines the complete solution, Eqs. 107.

We consider specifically the case of vertical earth field,

H o=- () éne (B.7)

approximately applicable in Arctic and Antarctic regions (+ and -,
respectively, here and below). Our problem then possesses azi-
muthal symmetry, so that the expansions of h, and h. indicated fol-
lowing Eqs. 107 become

h =V , ¥ = f dq A(q) J,(qp)ei¥t792 (B.8a,
~a ~ O
0 B.8b)

in the usual cylindrical harmonics, and

curlcurl z¢ s (B.9%9a)

o iwt+ qz—km z
f dq C(q) Jy(gp)e (B.9b)
0

©
]

in the vector-wave solutions of Morse and Feshbach (Ref. 47, p.
1823). Here A(q), C(q) are coefficients to be determined, J, are
Bessel functions, and the positive root v’ql-—km2 is intended since
z £ 0 in the sea. As to h,, at the air-sea surface Eq. 106 with
Eqs. B. 3 through B.5 reduces for the geometry of Eq. B.7 to the
form

~ ucHeZK iwt 32 e‘iksro - e-ikmro
h (atz—0)=t£ TZ-%zZ® 30 3d o (B.10)
S m

where p 1s the unit cylindrical radial vector and I, o2 + az,

~
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Tpon inserting Eqs. B.8 through B.10 into Eq. B.6 and using
the Fourier—~Bessel theorem, one determines that

Cq) = - —mo s (B.1la)
2 uoHeZK —dv’qz—ks2 -dv’qz-kmz
A(q) = 4 Frrowz)le - e .
q + vqZ - kmz s m
(B.11b)

Putting these coefficients into Eqs. B.8 and B.9 gives the complete
solution to our problem in terms of quadratures that are somewhat
analogous in form to the Sommerfeld integrals of electromagnetic
theory for submerged radio antennae. For example, the aerofield
scalar potential is from Eqs. B.8 and B.1l:

fot 2 —qzl -usd —umd\
¥=-C,e dqu ——‘L-—-q ey Jptwe e °-e Ty, @.120)

- K

C, = *2uoH_ —r—”s “% 7 (B.12b)
= 2 _ 2 = 2 _ 2

u = Yq k_ ard  u_ = Yq k2. (B.12¢)

Notice that the integral in Eq. B.12a is similar to that for the
magnetic aerofield radiated from a submerged, low-frequency, verti-
cal magnetic dipole (cf. Sinha and Bhattacharya, Ref. 50, Egs. 3,
4, 12, and 13) but more complicated by the appearance of ug as well
as up in the integrand. In general, the integrals for the EM case
have not been evaluated in closed form. Therefore, a fortiori in
the sonomagnetic case we must turn to approximate evaluation.

Consider that component of the magnetic field in air which
would be registered by a total field magnetometer,

haesil_l. 3210

Ino

(B.13)

=

for the present case (Eq. B.7). From Eqs. B.1l2a and B.8,

Ref. 50. A. K. Sinhs and P. K. Bhattacharya, "Vertical mag-
netic dipole buried inside a homogeneous earth,' Radio Sci., Vol.
1, 1966, p. 375.

- 90 -

. C e - - .- St e e A mm—————— e S A T =




i
%
i
H
i

S| e L B G MAE W N S AW e ——

P T gl Do A ezt

AT RINPY W I EE

RO FULTS ) A

RN

TR

SRR R,

e

T R e P A T R ST

i

Bimatl R e -

THE JOMNS HOPKINS UNIVERS!ITY
APPLIED PHYSICS LABORATORY

LAUREL MARYLAND

-u_d -u d
_ imt -qz s _ m .
h,_ = j'd T Tl (e e ). (B.14)
In terms of sonic and magnetic scale lengths
-4 40 __ 1 180
g ===, ) :T—Tm-— ’ (B.15)
s kg v " kn v

there are several regimes of range coordinates p, z, and depth d
for which we can give simple approximations to Eq. B.1l4.

1. Very close above shallow source (p,z,d << zm,zs):

iwt‘ . 2_1 2 ‘(Z+dd
h ~e c, - (k2-k 2 - 2D (56

in which C, - (kmz-ksz), via Egs. B.12b ard B.2, is

determined by source strength. The regime of Eq. B.16
includes the point on the sea surface directly above
the source,

iwt

1 1
h . (p=0,2=0) =~ e & 5 woHK) - 5 ,

provided now only that the source be shallow enough
(d << Qm,zs).

2. High altitude, directly overhead (z >> f£,,%5 but p, d<
lm,zs):

-ik d -ik_d

s m

iwt 6 e - e
hae e - C, (ikm) o , (B.17)

which is the same fall-off with height (1/z") as the
"quasi~-near" electromagnetic field of a vertical mag-
netic dipole.

. Far horizontal ranges at low altitude (p >> Lmslgs
z << Lp,0g) ¢

3
h w0t iksP o i . —71 (3.18)
ae % 21 2 < ° *
k +\Iks km
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This far~field circular wave reduces over measurement distances
that are sm 11 compared to the range (8p << p) to a plane wave

« ei(wt-ksx) where x = 8p. The wave amplitude is from Egs. B.18,
B.12b, and B.2,

] . 1o-11481/20 .4
lhae[ S H, + 6P * 10 FoO) » =5 (B.19)
in which the frequency behavior is contained in the function
2(\)0/\)) -%
F (v) = ———-—-(l +x +727/1 +x ) . (B.20a)
s X, v v
x, 2Vl + (vg/V)2 (B.20b)
uOCSZ
vy Er 2 Hz , (B.20c)

The last being the transition frequency of Eq. 55, at which ks =
k |.
m
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